In this note we report the results obtained in a single-photoproduction experiment on neutrons in deuterium, with an experimental apparatus made of scintillation counters, spark chambers and a magnetic spectrometer; the explored energy region is one around the second resonance, that is (500÷900) MeV indicent γ-ray energy. We briefly describe the present situation of the phenomenological analysis of the single photoproduction in the second resonance region and compare the results of an analysis made by us with the results obtained by other authors; in particular the e.m. coupling of theP11 isobaric state found by us is large, in accordance with the results of some other authors.
No description provided.
None
THIS HADRON PAIR CROSS SECTION PROVIDES ONLY AN UPPER LIMIT TO THE PION FORM FACTOR ABOVE 1.5 GEV SINCE KAON PRODUCTION IS NOT DISTINGUISHED.
The total cross sections of π± on protons in the momentum interval from 0.40 to 0.90 GeV/c have been measured with high relative precision. In this interval the statistical error varies between 10 and 20 μb. No new structure is observed.
No description provided.
This paper gives a detailed description of an experiment which studies the interactions of muon-type neutrinos in hydrogen and deuterium. The experiment was performed at the Zero Gradient Synchrotron using the wide-band neutrino beam incident on the Argonne 12-foot bubble chamber filled with hydrogen and deuterium. The neutrino energy spectrum peaks at 0.5 GeV and has a tail extending to 6 GeV. The shape and intensity of the flux is determined using measurements of pion yields from beryllium. The produced pions are focused by one or (for the latter part of the experiment) two magnetic horns. A total of 364000 pictures were taken with a hydrogen filling of the bubble chamber and 903 000 with a deuterium filling. The scanning and other analyses of the events are described. The most abundant reaction occurs off neutrons and is quasi-elastic scattering νd→μ−pps. The separation of these events from background channels is discussed. The total and differential cross sections are analyzed to obtain the axial-vector form factor of the nucleon. Our result, expressed in terms of a dipole form factor, gives an axial-vector mass of 0.95±0.09 GeV. A comparison is made to previous measurements using neutrino beams, and also to determinations based upon threshold pion electroproduction experiments. In addition, the data are used to measure the weak vector form factor and so check the conserved-vector-current hypothesis.
Measured Quasi-Elastic total cross section.
We have determined the cross section for γγ→π+π+π−π− in a way free of assumptions about the relative contributions fromρ0ρ0,ρ02π and 4π (uncorrelated phase space). We find a sharp onset above threshold and a rather high cross section of about 200 nb aroundWγγ=1.5 GeV which consists to about 40% ofρ0ρ0 production with sizeable contributions fromρ02π and 4π (PS). The total cross section as well as theρ0ρ0 content fall rather fast at higher c.m. energies. Attempts to explain this behaviour in terms of production of known resonances are not successful so far. The angular distributions do not show any significant structure pointing to resonance formation in the 4π-system. Only theρ0-meson is observed in the moment analysis. The decay distributions of theρ0 for forward produced rhos are fairly consistent with helicity conservation of the produced rhos in accordance with the VDM picture.
No description provided.
RESULTS OF DECOMPOSITION OF THE CROSS SECTION INTO RHO RHO, RHO 2PI, AND 4PI(PHASE SPACE) USING TWO WIDE W BINS. SEE TEXT OF PAPER FOR DISCUSSION OF FITS.
RESULTS OF DECOMPOSITION OF THE CROSS SECTION INTO THE RHO RHO, RHO PI, AND 4PI (PHASE SPACE) USING SMALL W BINS. SEE TEXT OF PAPER FOR DISCUSSION OF FITS.
The production of thef0 in two photon collisions, with the subsequent decayf0→π+π− has been observed in the CELLO detector at PETRA. Thef0 peak was found to lie on a dipion continuum and to be shifted downwards in mass by ≃50 MeV/c2. The ππ mass spectrum from 0.8 to 1.5 GeV/c2 was well fitted by the model of Mennessier using only a unitarised Born amplitude and helicity 2f0 amplitude. The previously observed mass shift and distortion of thef0 peak are explained by strong interference between the Born andf0 amplitudes. The only free parameter in the fit of the data to the model is the radiative widthΓγγ(f0). It was found that:Γγγ(f0)=2.5±0.1±0.5 keV where the first (second) quoted errors are statistical (systematic).
Data read from graph.
Data read from graph.
The\(e^ +e^ -\to K_s^0 K^ \pm\pi ^ \mp\) andK+K−π0 cross sections have been measured in the energy interval\(1350 \leqq \sqrt s\leqq 2400\) with the DM2 detector at DCI. The\(K_s^0 K^ \pm\pi ^ \mp\) cross section shows the contribution of an isoscalar vector meson at ≈1650 MeV/c2 in agreement with a previous experiment. The low statisticsK+K−π0 measurement is consistent with the above result.
The K0S K+- PI-+ cross section.
We have measured the crosss section for the reaction e + e − → 4 π ± in the energy range 1 2–3.0 GeV.No statistically significant evidence for a new vector meson in the ϱ″ region is found.
No description provided.
We have observed 1085 events of the type e + e − → hadrons, in the total centre-of-mass energy range √ s = 1.2 to 3.0 GeV. The energy dependence of the total annihilation cross-section, parametrized in the form σ ( e + e − → hadrons ) = A · s n , is measured to be n = -(1.54 −0.29 +0.17 ) in the above energy range.
RESULTS USING THE (AP P) MODEL WITH PHASE-SPACE CORRECTIONS.
R AS CALCULATED FROM THE TOTAL HADRONIC CROSS SECTION USING THE (AP P) MODEL.
TOTAL CROSS SECTIONS OBTAINED USING THE QUASI-MODEL-INDEPENDENT METHOD ARE TABULATED HERE.
None
No description provided.