The inclusive production of neutral kaons in 70 GeV/ c K + p interactions is studied with the CERN BEBC bubble chamber. The (semi-)inclusive cross sections are interpreted in terms of the various strangeness channels leading to neutral kaon production. The invariant inclusive cross section for kaon production is studied as a function of p t 2 and the Feynman variable x . The latter distributions are considered both “raw” and corrected for the presence of K 0 's resulting from K ∗ decay. They are compared with the predictions expected from the Regge-Mueller formalism, the recombination model and fragmentation models.
No description provided.
No description provided.
Nearly 200 000 examples of the diffractive process K − p → K − π − π + p at 63 GeV have been obtained using a two magnet spectrometer equipped with Čerenkov counters for secondary particle identification. In addition some 2000 examples of the process K − p → ω K − p have been obtained. The K ππ data have been subjected to partial-wave analysis. The dominant J P = 1 + system couples to K ∗ π , in both S and D waves, ϱ K, κπ and ε K. The data confirm the existence of two J P = 1 + Q mesons and their masses, widths and branching ratios are given. The ifωK data show that the couplings of the Q mesons to ω K are approximately equal to the couplings to ϱ 0 K. The two 1 + nonets expected in the quark model are discussed in the light of this and other recent experiments. There is strong evidence for a broad J P = 0 − resonance at about 1.46 GeV. At higher masses, structure in the J P = 2 − partial waves establishes the existence of at least one J P = 2 − L meson.
JP=1+ S-WAVE PARTIAL WAVE INTENSITIES AND TOTAL INTENSITY FOR Q-REGION. THE <K* PI> INTENSITY IS DOMINATED BY QHIGH. THE <K RHO> AND <KAPPA PI> INTENSITIES ARE DOMINATED BY QLOW.
The inclusive reactions h+p→ φ +X, (h= π ±, ,K ± ,p ± ), are studied for 0⪅ x F ⪅0.3 and p ⊥ ⩽ 1 GeV at 93 and and 63 GeV incident momentum. Differential cross sections d σ /d p ⊥ 2 and dσ /d x F are presented and are compared with predictions of the naive parton model.
No description provided.
No description provided.
No description provided.
Charged hadron production ine+e− annihilation is studied in the 7 to 10 GeV CM energy region and at the Υ (9.46) and Υ′ (10.01) resonances with the LENA detector at DORIS. The statistical moments of the charged multiplicities are studied. The data show KNO scaling behaviour and suggest the presence of long range correlations. An average charged multiplicityrise of Δn(Υ)=0.55±0.19 and Δn(Υ′)=1.26±0.29 over the continuum is observed for the Υ and Υ′ direct decays. The jet structure of the Υ and Υ′ direct decays is investigated using the charged particles. The polar angular distributions of the jet axis behave like 1+α(T) cos2θ with 〈α(T)〉Υ=0.7±0.3 and 〈α(T)〉Υ′=0.6±0.4. The 〈α(T)〉Υ value is in agreement with the QCD vector gluon assignment and excludes scalar gluons by more than four standard deviations.
No description provided.
No description provided.
No description provided.
Results on inclusive particle production in π−n interactions at 21, 205 and 360 GeV/c are presented. The invariant cross sections in both neutron fragmentation and central regions are found to be equal within errors to the corresponding cross sections for π−p collisions and exhibit the same energy dependence. A strong energy dependence of the invariant cross section ratios of negative and positive pions is observed. There is also an indication of transverse momentum dependence of these ratios. The η− correlations in the neutron fragmentation region show little variation with energy and are in agreement with the predictions of the naive quark recombination scheme.
DATA ON MULTIPLICITY ARE OBTAINED BY AVERAGING OVER ALL THE TOPOLOGIES EXCEPT THE ONE-PRONG ONE.
None
No description provided.
No description provided.
No description provided.
The polarization of 26 000 Σ+ hyperons produced by 400-GeV protons on Be has been measured. The polarizations of Σ+ and Λ hyperons have the opposite sign. The magnitude increases with momentum at 5-mrad production angle, and averages 22% over the momentum range 140 to 280 GeV/c.
No description provided.
No description provided.
A search for narrow resonances in e + e − annihilation between 33.00 and 36.72 GeV is reported. No evidence is found for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is determined to be 28 nb MeV, a value significantly below that expected for the lowest t t bound state.
AVERAGE R VALUE THROUGHOUT ENERGY RANGE. SYSTEMATIC ERROR IS CONSERVATIVE AND WILL BE IMPROVED.
R VALUES AT 20 MEV STEPS. DATA TAKEN FROM TABLE IN THE PREPRINT.
Measurements of the reaction γ p → p π + π − π + π − are presented, in which π + π − π + π − systems with masses up to 3 GeV are produced from fragmentation of the incident photon. The reaction is dominated by production of the large peak of the ϱ′(1600) meson and, at higher masses ≳2 GeV, y production of jet-like 4 π systems. The ϱ′(1600) meson is produced by a predominantly s -channel helicity conserving mechanism. At higher masses there are also indications of ϱπ peaks, of masses 1.3 GeV (the A 2 meson) and 1.75 GeV, produced with a recoiling π meson by a mechanism consistent with the Deck effect.
CORRECTED FOR TAILS OF BREIT-WIGNER RESONANCE USED IN FIT AND ALLOWING FOR 10 PCT BACKGROUND.
Data on hadron production by e + e − annihilation at c.m. energies between 12 and 36.6 GeV have been collected using the JADE detector. They have been analysed in terms of single-photon and weak neutral-current exchange assuming production of quark-antiquark pairs with only d, u, s, c and b quarks to produce values for the quark weak neutral-current couplings. A further analysis in terms of the Glashow-Salam-Weinberg theory produced the result, sin 2 θ W = 0.22 ± 0.08 . The theory has therefore been tested in a new energy domain and within the context of the neutral weak couplings of the first, second and third generation quarks.
No description provided.
WIDTH(Z) = 2.5 GEV WAS ASSUMED. CONST(N=SIN2TW) WAS DETERMINED FROM RATIO(HADRONS/MU). FIRST ORDER QCD.