High-precision measurements by the ATLAS Collaboration are presented of inclusive $W^+\to\ell^+\nu$, $W^-\to\ell^-\bar{\nu}$ and $Z/\gamma^*\to\ell\ell$ ($\ell=e,\mu$) Drell-Yan production cross sections at the LHC. The data were collected in proton-proton collisions at $\sqrt{s} = 7$ TeV with an integrated luminosity of 4.6 fb$^{-1}$. Differential $W^+$ and $W^-$ cross sections are measured in a lepton pseudorapidity range $|\eta_{\ell}| = 2.5$. Differential $Z/\gamma^*$ cross sections are measured as a function of the absolute dilepton rapidity, for $|y_{\ell\ell}| < 3.6$, for three intervals of dilepton mass, $m_{\ell\ell}$, extending from 46 to 150 GeV. The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive $e^{\pm}p$ scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element $|V_{cs}|$ is also provided.
Fiducial cross sections times branching ratios for $W^+$, $W^-$, central and forward $Z/\gamma^*$ ($m_{ee} = 66-116$ GeV) production in the electron decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the central electron pseudorapidity is restricted to be $|\eta|<2.47$ and excludes $1.37<|\eta|<1.52$, and the forward electron pseudorapidity excludes the region $3.16<|\eta|<3.35$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.
Fiducial cross sections times branching ratios for $W^+$, $W^-$ and $Z/\gamma^*$ ($m_{\mu\mu} = 66-116$ GeV) production in the muon decay channels. The fiducial regions used for the measurement are those defined for the combined fiducial regions, except that the muon pseudorapidity is restricted to be $|\eta|<2.4$. The uncertainties denote the statistical (stat), the systematic (syst) and the luminosity (lumi) uncertainties.
Integrated fiducial cross sections times leptonic branching ratios in the electron and muon channels and their combination with statistical and systematic uncertainties, for $W^+$, $W^-$, their sum and the $Z/\gamma^*$ process measured at $\sqrt{s}=7$ TeV. The $Z/\gamma^*$ cross section is defined for the dilepton mass window $m_{\ell\ell} = 66 - 116$ GeV. The common fiducial regions are defined in Section 2.3. The uncertainties denote the statistical (stat), the experimental systematic (syst), and the luminosity (lumi) contributions.
Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a $^6$LiD target. The data were taken at $160~{\rm GeV}$ beam energy and the results are shown for the kinematic range $1~({\rm GeV}/c)^2 < Q^2 < 100~({\rm GeV}/c)^2$ in photon virtuality, $0.004
Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in $x$ bins averaged over $Q^2$.
Values of $A_1^d$ and $g_1^d$ for the COMPASS deuteron data at 160 GeV in (x, $Q^2$) bins.
Values of $g_1^{NS}$ for the COMPASS data in $x$ bins averaged over $Q^2$.
Measurements of the associated production of a Z boson with at least one jet originating from a b quark in proton-proton collisions at sqrt(s) = 8 TeV are presented. Differential cross sections are measured with data collected by the CMS experiment corresponding to an integrated luminosity of 19.8 inverse femtobarns. Z bosons are reconstructed through their decays to electrons and muons. Cross sections are measured as a function of observables characterizing the kinematics of the b jet and the Z boson. Ratios of differential cross sections for the associated production with at least one b jet to the associated production with any jet are also presented. The production of a Z boson with two b jets is investigated, and differential cross sections are measured for the dijet system. Results are compared to theoretical predictions, testing two different flavour schemes for the choice of initial-state partons.
Differential fiducial cross section for Z(1b) production as a function of the leading b jet pT
Cross section ratio for Z(1b) and Z+jets production as a function of the leading b/inclusive (j) jet pT
Differential fiducial cross section for Z(1b) production as a function of the leading b jet |eta|
The dynamics of isolated-photon plus one-, two- and three-jet production in $pp$ collisions at a centre-of-mass energy of 8 TeV are studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 20.2 fb$^{-1}$. Measurements of isolated-photon plus jets cross sections are presented as functions of the photon and jet transverse momenta. The cross sections as functions of the azimuthal angle between the photon and the jets, the azimuthal angle between the jets, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass system are presented. The pattern of QCD radiation around the photon and the leading jet is investigated by measuring jet production in an annular region centred on each object; enhancements are observed around the leading jet with respect to the photon in the directions towards the beams. The experimental measurements are compared to several different theoretical calculations, and overall a good description of the data is found.
Measured cross sections for isolated-photon plus 1jet production as a function of $E_{\rm T}^{\gamma}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $p_{\rm T}^{\rm jet1}$.
Measured cross sections for isolated-photon plus 1jet production as a function of $m^{\gamma-\rm jet1}$.
A bubble chamber study of π-p charge-exchange scattering at 930 MeV is reported. The forward differential cross-section is derived and compared with the result obtained on the basis of dispersion relations and the charge-independence hypothesis. Satisfactory agreement is obtained.
No description provided.
None
No description provided.
Two searches for new phenomena in final states containing a same-flavour opposite-lepton (electron or muon) pair, jets, and large missing transverse momentum are presented. These searches make use of proton--proton collision data, collected during 2015 and 2016 at a centre-of-mass energy $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider, which correspond to an integrated luminosity of 14.7 fb$^{-1}$. Both searches target the pair production of supersymmetric particles, squarks or gluinos, which decay to final states containing a same-flavour opposite-sign lepton pair via one of two mechanisms: a leptonically decaying Z boson in the final state, leading to a peak in the dilepton invariant-mass distribution around the Z boson mass; and decays of neutralinos (e.g. $\tilde{\chi}_2^0 \rightarrow \ell^+\ell^- \tilde{\chi}_1^0$), yielding a kinematic endpoint in the dilepton invariant-mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted in simplified models of gluino-pair (squark-pair) production, and provide sensitivity to gluinos (squarks) with masses as large as 1.70 TeV (980 GeV).
Dilepton invariant mass distribution in SRZ.
Dilepton transverse momentum distribution in SRZ.
Missing transverse momentum distribution in SRZ.
The cross section of top quark-antiquark pair production in proton-proton collisions at sqrt(s) = 13 TeV is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2 inverse femtobarns. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is 815 +/- 9 (stat) +/- 38 (syst) +/- 19 (lumi) pb, in agreement with the expectation from the standard model.
Summary of the individual contributions to the uncertainty in the $\sigma_{t\bar{t}}$ measurement.
Measurement of the $t\bar{t}$ production cross-section in $pp$ collisions at $\sqrt{s} = 13$ TeV.
Number of dilepton events obtained after applying the full selection. The results are given for the individual sources of background, $t\bar{t}$ signal with a top quark mass of 172.5 GeV and $\sigma_{t\bar{t}}$ = 832 +/- 46 pb, and data. The uncertainties correspond to statistical and systematic components.
Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 inverse femtobarns. Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.
The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.
Bin-to-bin correlation in the the cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.
The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the 1$^\text{st}$ jet $p_{\text{T}}$, $p_{\text{T}}(\text{j}_1)$, and breakdown of the relative uncertainty.
A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 5.5-8.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 8.0-11.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.
Inclusive jet cross sections measured as a function of $P_T^{\rm jet}$ for $Q^2$ = 11.0-16.0 GeV$^2$. The correction factors on the theoretical cross sections $c^{\rm had}$ are listed together with their uncertainties. The radiative correction factors $c^{\rm rad}$ are already included in the quoted cross sections. Note that the uncertainties labelled $\delta^{E_{e^\prime}}$ and $\delta^{\theta_{e^\prime}}$ in Table 6 of the paper (arXiv:1611.03421v3) should be swapped. See Table 5 of arXiv:1406.4709v2 for details of the correlation model.