Measurements of the total and differential Higgs boson production cross-sections, via $WH$ and $ZH$ associated production using $H\rightarrow WW^\ast\rightarrow\ellν\ellν$ and $H\rightarrow WW^\ast\rightarrow\ellνjj$ decays, are presented. The analysis uses proton-proton events delivered by the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector between 2015 and 2018. The data correspond to an integrated luminosity of 140 fb$^{-1}$. The sum of the $WH$ and $ZH$ cross-sections times the $H\rightarrow WW^\ast$ branching fraction is measured to be $0.44^{+0.10}_{-0.09}$ (stat.) $^{+0.06}_{-0.05}$ (syst.) pb, in agreement with the Standard Model prediction. Higgs boson production is further characterised through measurements of the differential cross-section as a function of the transverse momentum of the vector boson and in the framework of Simplified Template Cross-Sections.
Post-fit distribution of $ANN_{Zdom}$ in the Z-dominated SR. The post-fit result is obtained from the combined 2-POI fit described in section 9.1 of the paper.
Best-fit values of the total $WH$, $ZH$, and $VH$ cross sections times the $H\rightarrow WW^{*}$ branching ratio.
Observed profile likelihood as a function of $\sigma\times\mathcal{B}_{H\rightarrow WW^{*}}$ normalised by the SM expectation for the $VH$ and $WH/ZH$ measurements from the combined 1- and 2-POI fits, respectively
This paper presents a first measurement of the cross-section for the charged-current Drell-Yan process $pp\rightarrow W^{\pm} \rightarrow \ell^{\pm} ν$ above the resonance region, where $\ell$ is an electron or muon. The measurement is performed for transverse masses, $m_{\text{T}}^{\text{W}}$, between 200 GeV and 5000 GeV, using a sample of 140 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected by the ATLAS detector at the LHC during 2015-2018. The data are presented single differentially in transverse mass and double differentially in transverse mass and absolute lepton pseudorapidity. A test of lepton flavour universality shows no significant deviations from the Standard Model. The electron and muon channel measurements are combined to achieve a total experimental precision of 3% at low $m_{\text{T}}^{\text{W}}$. The single- and double differential $W$-boson charge asymmetries are evaluated from the measurements. A comparison to next-to-next-to-leading-order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading-order electroweak effects indicates the potential of the data to constrain parton distribution functions. The data are also used to constrain four fermion operators in the Standard Model Effective Field Theory formalism, in particular the lepton-quark operator Wilson coefficient $c_{\ell q}^{(3)}.$
The production of $D^{\pm}$ and $D_{s}^{\pm}$ charmed mesons is measured using the $D^{\pm}/D_{s}^{\pm} \to ϕ(μμ)π^{\pm}$ decay channel with 137 fb$^{-1}$ of $\sqrt{s} = 13$ TeV proton-proton collision data collected with the ATLAS detector at the Large Hadron Collider during the years 2016-2018. The charmed mesons are reconstructed in the range of transverse momentum $12 < p_\mathrm{T} < 100$ GeV and pseudorapidity $|η| < 2.5$. The differential cross-sections are measured as a function of transverse momentum and pseudorapidity, and compared with next-to-leading-order QCD predictions. The predictions are found to be consistent with the measurements in the visible kinematic region within the large theoretical uncertainties.
The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.
The measured differential cross-sections and the predictions from GM-VFNS and FONLL calculations for the $D^\pm$ meson in bins of $p_T$ for $|\eta| < 2.5$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS and FONLL.
The measured differential cross-sections and the predictions from the GM-VFNS calculation for the $D_s^\pm$ meson in bins of $|\eta|$. The statistical, systematic (excluding branching ratio) and branching ratio uncertainties are shown separately for data, while the total theory uncertainties are shown for GM-VFNS.
An analysis of the production of a Higgs boson ($H$) in association with a top quark-antiquark pair ($\mathrm{t\bar{t}}H$) or a single top quark ($tH$) is presented. The Higgs boson decay into a bottom quark-antiquark pair ($H \to\mathrm{b\bar{b}}$) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, which correspond to an integrated luminosity of 138 fb$^{-1}$. The observed $\mathrm{t\bar{t}}H$ production rate relative to the standard model expectation is 0.33 $\pm$ 0.26 = 0.33 $\pm$ 0.17 (stat) $\pm$ 0.21 (syst). Additionally, the $\mathrm{t\bar{t}}H$ production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of 19.3 $^{+9.2}_{-6.0}$. Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the $\mathrm{t\bar{t}}H$ and $tH$ production rates, and the results are combined with those obtained in other Higgs boson decay channels.
Best fit results of the ttH signal-strength modifier in each channel, in each year, and in the combination of all channels and years. Uncertainties are correlated between the channels and years.
Likelihood-ratio test statistic as a function of the ttH strength modifiers $\mu_{ttH}$ and the $ttB$ background normalisation. The observed best fit point is $(\mu_{ttH}, ttB) = (0.33, 1.19)$.
Best fit results of the ttH signal-strength modifiers in the different Higgs pT bins of the STXS measurement.
This paper presents the measurement of fiducial and differential cross sections for both the inclusive and electroweak production of a same-sign $W$-boson pair in association with two jets ($W^\pm W^\pm jj$) using 139 fb$^{-1}$ of proton-proton collision data recorded at a centre-of-mass energy of $\sqrt{s}=13$ TeV by the ATLAS detector at the Large Hadron Collider. The analysis is performed by selecting two same-charge leptons, electron or muon, and at least two jets with large invariant mass and a large rapidity difference. The measured fiducial cross sections for electroweak and inclusive $W^\pm W^\pm jj$ production are $2.92 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb and $3.38 \pm 0.22\, \text{(stat.)} \pm 0.19\, \text{(syst.)}$ fb, respectively, in agreement with Standard Model predictions. The measurements are used to constrain anomalous quartic gauge couplings by extracting 95% confidence level intervals on dimension-8 operators. A search for doubly charged Higgs bosons $H^{\pm\pm}$ that are produced in vector-boson fusion processes and decay into a same-sign $W$ boson pair is performed. The largest deviation from the Standard Model occurs for an $H^{\pm\pm}$ mass near 450 GeV, with a global significance of 2.5 standard deviations.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\ell\ell}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 11.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{T}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 12.
Fiducial differential cross section of the electroweak $W^\pm W^\pm jj$ production as a function of $m_{\mathrm{jj}}$. The correlation of uncertainties of the measured cross section across bins is presented in Table 13.
We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.
Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.
Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.
The first measurement of the cross section for incoherent photonuclear production of J/$\psi$ vector mesons as a function of the Mandelstam $|t|$ variable is presented. The measurement was carried out with the ALICE detector at midrapidity, $|y|<0.8$, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. This rapidity interval corresponds to a Bjorken-$x$ range $(0.3-1.4)\times 10^{-3}$. Cross sections are given in five $|t|$ intervals in the range $0.04<|t|<1$ GeV$^2$ and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a $|t|$-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.
|t|-dependence of incoherent J/Psi photonuclear production cross section in Pb-Pb UPCs measured at midrapidity, |y| < 0.8
The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.
Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval
Exclusive J/psi photoproduction cross section in p-Pb UPC.
Dissociative J/psi photoproduction cross section in p-Pb UPC.
Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.
Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
The production of Z bosons associated with jets is measured in pp collisions at $\sqrt{s}$ = 13 TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3 fb$^{-1}$. The multiplicity of jets with transverse momentum $p_\mathrm{T}$$\gt$ 30 GeV is measured for different regions of the Z boson's $p_\mathrm{T}$(Z), from lower than 10 GeV to higher than 100 GeV. The azimuthal correlation $\Delta \phi$ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of $p_\mathrm{T}$(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low $p_\mathrm{T}$(Z) regions.
The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $p_T<10$ GeV
The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $10<p_T<30$ GeV
The measured cross section as a function of exclusive jet multiplicity, $N_{\text{jets}}$, when $30<p_T<50$ GeV