Observation of the Onset of Constituent Quark Number Scaling in Heavy-Ion Collisions at RHIC

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 135 (2025) 072301, 2025.
Inspire Record 2907591 DOI 10.17182/hepdata.159489

Partonic collectivity is one of the necessary signatures for the formation of Quark-Gluon-Plasma in high-energy nuclear collisions. Number of Constituent Quarks (NCQ) scaling has been observed for light hadron elliptic flow $v_2$ in top energy nuclear collisions at RHIC and the LHC, and this has been theoretically suggested as strong evidence for partonic collectivity. In this letter, a systematic analysis of $v_2$ of $\pi^{\pm}$, $K^{\pm}$, $K^{0}_{S}$, $p$ and $\Lambda$ in Au+Au collisions at ${\sqrt{s_{_{\rm{NN}}}}}$ = 3.2, 3.5, 3.9, and 4.5 GeV, with the STAR experiment at RHIC, is presented. NCQ scaling is markedly violated at 3.2 GeV, consistent with a hadronic-interaction dominated equation of state. However, as the collision energy increases, a gradual evolution to NCQ scaling is observed. This beam-energy dependence of $v_2$ for all hadrons studied provides evidence for the onset of dominant partonic interactions by ${\sqrt{s_{_{\rm{NN}}}}}$ = 4.5 GeV.

72 data tables

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3 GeV

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.2 GeV

$p_{T}$ dependence of $v_{2}$ for $\pi^{+}$ in Au+Au collisions at 3.5 GeV

More…

Precision measurement of the longitudinal double-spin asymmetry for dijet production at intermediate pseudorapidity in polarized $pp$ collisions at $\sqrt{s}$ = 200 GeV

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.D 112 (2025) 012003, 2025.
Inspire Record 2854313 DOI 10.17182/hepdata.156055

The STAR Collaboration reports precise measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for dijet production with at least one jet at intermediate pseudorapidity $0.8 < η_{\rm jet} < 1.8$ in polarized proton-proton collisions at a center-of-mass energy of 200 GeV. This study explores partons scattered with a longitudinal momentum fraction ($x$) from 0.01 to 0.5, which are predominantly characterized by interactions between high-$x$ valence quarks and low-$x$ gluons. The results are in good agreement with previous measurements at 200 GeV with improved precision and are found to be consistent with the predictions of global analyses that find the gluon polarization to be positive. In contrast, the negative gluon polarization solution from the JAM Collaboration is found to be strongly disfavored.

6 data tables

$A_{LL}$ as a function of parton-level invariant mass for dijets with the East barrel-endcap.

$A_{LL}$ as a function of parton-level invariant mass for dijets with the West barrel-endcap.

$A_{LL}$ as a function of parton-level invariant mass for dijets with the endcap-endcap.

More…

Light Nuclei Femtoscopy and Baryon Interactions in 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Lett.B 864 (2025) 139412, 2025.
Inspire Record 2837311 DOI 10.17182/hepdata.156057

We report the measurements of proton-deuteron ($p$-$d$) and deuteron-deuteron ($d$-$d$) correlation functions in Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ = 3 GeV using fixed-target mode with the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). For the first time, the source size ($R_{G}$), scattering length ($f_{0}$), and effective range ($d_{0}$) are extracted from the measured correlation functions with a simultaneous fit. The spin-averaged $f_0$ for $p$-$d$ and $d$-$d$ interactions are determined to be -5.28 $\pm$ 0.11(stat.) $\pm$ 0.82(syst.) fm and -2.62 $\pm$ 0.02(stat.) $\pm$ 0.24(syst.) fm, respectively. The measured $p$-$d$ interaction is consistent with theoretical calculations and low-energy scattering experiment results, demonstrating the feasibility of extracting interaction parameters using the femtoscopy technique. The reasonable agreement between the experimental data and the calculations from the transport model indicates that deuteron production in these collisions is primarily governed by nucleon coalescence.

3 data tables

Proton-Deuteron correlation function in 3 GeV Au+Au collisions.

Deuteron-Deuteron correlation function in 3 GeV Au+Au collisions.

Source size of p-d and d-d correlation function


Strangeness Production in $\sqrt{s_{\rm NN}}=3$ GeV Au+Au Collisions at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
JHEP 10 (2024) 139, 2024.
Inspire Record 2807679 DOI 10.17182/hepdata.153884

We report multi-differential measurements of strange hadron production ranging from mid- to target-rapidity in Au+Au collisions at a center-of-momentum energy per nucleon pair of $\sqrt{s_{\rm NN}}=3$ GeV with the STAR experiment at RHIC. $K^0_S$ meson and $\Lambda$ hyperon yields are measured via their weak decay channels. Collision centrality and rapidity dependences of the transverse momentum spectra and particle ratios are presented. Particle mass and centrality dependence of the average transverse momenta of $\Lambda$ and $K^0_S$ are compared with other strange particles, providing evidence of the development of hadronic rescattering in such collisions. The 4$\pi$ yields of each of these strange hadrons show a consistent centrality dependence. Discussions on radial flow, the strange hadron production mechanism, and properties of the medium created in such collisions are presented together with results from hadronic transport and thermal model calculations.

19 data tables

dN/dy of lambda for different centrality bins.

dN/dy of Ks0 for different centrality bins.

Rapidity dependence of Lambda/p for different centrality bins.

More…

Measurement of directed flow in Au+Au collisions at $\sqrt{s_{NN}}=$ 19.6 and 27 GeV with the STAR Event Plane Detector

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 111 (2025) 014906, 2025.
Inspire Record 2808515 DOI 10.17182/hepdata.153808

In heavy-ion collision experiments, the global collectivity of final-state particles can be quantified by anisotropic flow coefficients ($v_n$). The first-order flow coefficient, also referred to as the directed flow ($v_{1}$), describes the collective sideward motion of produced particles and nuclear fragments in heavy-ion collisions. It carries information on the very early stage of the collision, especially at large pseudorapidity ($\eta$), where it is believed to be generated during the nuclear passage time. Directed flow therefore probes the onset of bulk collective dynamics during thermalization, providing valuable experimental guidance to models of the pre-equilibrium stage. In 2018, the Event Plane Detector (EPD) was installed in STAR and used for the Beam Energy Scan phase-II (BES-II) data taking. The combination of EPD ($2.1 <|\eta|< 5.1$) and high-statistics BES-II data enables us to extend the $v_{1}$ measurement to the forward and backward $\eta$ regions. In this paper, we present the measurement of $v_{1}$ over a wide $\eta$ range in Au+Au collisions at $\sqrt{s_{NN}}=$ 19.6 and 27 GeV using the STAR EPD. The results of the analysis at $\sqrt{s_{NN}}=$19.6 GeV exhibit excellent consistency with the previous PHOBOS measurement, while elevating the precision of the overall measurement. The increased precision of the measurement also revealed finer structures in heavy-ion collisions, including a potential observation of the first-order event-plane decorrelation. Multiple physics models were compared to the experimental results. Only a transport model and a three-fluid hybrid model can reproduce a sizable $v_{1}$ at large $\eta$ as was observed experimentally. The model comparison also indicates $v_{1}$ at large $\eta$ might be sensitive to the QGP phase transition.

32 data tables

Directed flow vs pseudorapidity.

Directed flow vs pseudorapidity.

Directed flow vs pseudorapidity.

More…

Results on Elastic Cross Sections in Proton-Proton Collisions at $\sqrt{s} = 510$ GeV with the STAR Detector at RHIC

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 852 (2024) 138601, 2024.
Inspire Record 2704122 DOI 10.17182/hepdata.144920

We report results on an elastic cross section measurement in proton-proton collisions at a center-of-mass energy $\sqrt{s}=510$ GeV, obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The elastic differential cross section is measured in the four-momentum transfer squared range $0.23 \leq -t \leq 0.67$ GeV$^2$. We find that a constant slope $B$ does not fit the data in the aforementioned $t$ range, and we obtain a much better fit using a second-order polynomial for $B(t)$. The $t$ dependence of $B$ is determined using six subintervals of $t$ in the STAR measured $t$ range, and is in good agreement with the phenomenological models. The measured elastic differential cross section $\mathrm{d}\sigma/\mathrm{dt}$ agrees well with the results obtained at $\sqrt{s} = 546$ GeV for proton--antiproton collisions by the UA4 experiment. We also determine that the integrated elastic cross section within the STAR $t$-range is $\sigma^\mathrm{fid}_\mathrm{el} = 462.1 \pm 0.9 (\mathrm{stat.}) \pm 1.1 (\mathrm {syst.}) \pm 11.6 (\mathrm {scale})$~$\mu\mathrm{b}$.

2 data tables

Top panel: The $pp$ elastic differential cross section $d\sigma/dt$ fitted with an exponential $A e^{-B(t)|t|}$. Bottom panel: Residuals (Data - Fit)/Error. Uncertainties on the data points are smaller than the symbol size. The vertical scale uncertainty of 2.5% is not included in in the full error.

Results of the exponential function $A e^{-B(t)|t|}$ fit to the elastic differential cross section data as well as the integrated fiducial cross section are listed. Also listed are the corresponding values of the statistical and systematic uncertainties. The scale (luminosity and trigger efficiency) uncertainty of 2.5% applicable to the fit parameter $A$ and fiducial cross section $\sigma^\mathrm{fid}_\mathrm{el}$ is not included in the full error.


Measurement of in-medium jet modification using direct photon+jet and $\pi^{0}$+jet correlations in $p+p$ and central Au+Au collisions at $\sqrt{s_{\rm NN}} = 200$ GeV

The STAR collaboration Aboona, B.E. ; Adam, J. ; Adamczyk, L. ; et al.
Phys.Rev.Lett. 134 (2025) 232301, 2025.
Inspire Record 2693040 DOI 10.17182/hepdata.144263

The STAR Collaboration presents measurements of the semi-inclusive distribution of charged-particle jets recoiling from energetic direct-photon ($\gamma_{\rm dir}$) and neutral-pion ($\pi^{0}$) triggers in p+p and central Au+Au collisions at $\sqrt{s_\mathrm{NN}}$ GeV over a broad kinematic range, for jet resolution parameters $R$=0.2 and 0.5. Medium-induced jet yield suppression is observed to be larger for $R$=0.2 than for 0.5, reflecting the angular range of jet energy redistribution due to quenching. The predictions of model calculations incorporating jet quenching are not fully consistent with the observations. These results provide new insight into the physical origins of jet quenching.

8 data tables

I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.2 of gamma_{dir}+jet with E_{T,trig}= 15-20 GeV.

I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.5 of gamma_{dir}+jet with E_{T,trig}= 15-20 GeV.

I_{AA} of Au+Au 0%-15% collisions at sqrt{s_{NN}} = 200 GeV for R = 0.2 of pi^{0}+jet with E_{T,trig}= 11-15 GeV.

More…

Global polarization of $\Lambda$ and $\bar{\Lambda}$ hyperons in Au+Au collisions at $\sqrt{s_{\rm NN}}=19.6$ and $27$ GeV

The STAR collaboration Abdulhamid, M.I. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Rev.C 108 (2023) 014910, 2023.
Inspire Record 2659670 DOI 10.17182/hepdata.140936

In relativistic heavy-ion collisions, a global spin polarization, $P_\mathrm{H}$, of $\Lambda$ and $\bar{\Lambda}$ hyperons along the direction of the system angular momentum was discovered and measured across a broad range of collision energies and demonstrated a trend of increasing $P_\mathrm{H}$ with decreasing $\sqrt{s_{NN}}$. A splitting between $\Lambda$ and $\bar{\Lambda}$ polarization may be possible due to their different magnetic moments in a late-stage magnetic field sustained by the quark-gluon plasma which is formed in the collision. The results presented in this study find no significant splitting at the collision energies of $\sqrt{s_{NN}}=19.6$ and $27$ GeV in the RHIC Beam Energy Scan Phase II using the STAR detector, with an upper limit of $P_{\bar{\Lambda}}-P_{\Lambda}<0.24$% and $P_{\bar{\Lambda}}-P_{\Lambda}<0.35$%, respectively, at a 95% confidence level. We derive an upper limit on the na\"ive extraction of the late-stage magnetic field of $B<9.4\cdot10^{12}$ T and $B<1.4\cdot10^{13}$ T at $\sqrt{s_{NN}}=19.6$ and $27$ GeV, respectively, although more thorough derivations are needed. Differential measurements of $P_\mathrm{H}$ were performed with respect to collision centrality, transverse momentum, and rapidity. With our current acceptance of $|y|<1$ and uncertainties, we observe no dependence on transverse momentum and rapidity in this analysis. These results challenge multiple existing model calculations following a variety of different assumptions which have each predicted a strong dependence on rapidity in this collision-energy range.

5 data tables

The first-order event-plane resolution determined by the STAR EPD as a function of collision centrality is roughly doubled in comparison to previous analyses using the STAR BBC. We see $R_{\rm EP}^{(1)}$ peak for mid-central collisions.

The mid-central $P_{\rm H}$ measurements reported in this work are shown alongside previous measurements in the upper panel, and are consistent with previous measurements at the energies studied here. The difference between integrated $P_{\bar{\Lambda}}$ and $P_{\Lambda}$ is shown at $\sqrt{s_{\rm{NN}}}$=19.6 and 27 GeV alongside previous measurements in the lower panel. The splittings observed with these high-statistics data sets are consistent with zero. Statistical uncertainties are represented as lines while systematic uncertainties are represented as boxes. The previous $P_{\bar{\Lambda}}-P_{\Lambda}$ result at $\sqrt{s_{\rm NN}}=7.7$ GeV is outside the axis range, but is consistent with zero within $2\sigma$.

$P_{\rm H}$ measurements are shown as a function of collision centrality at $\sqrt{s_{\rm NN}}$=19.6 and 27 GeV. Statistical uncertainties are represented as lines while systematic uncertainties are represented as boxes. $P_{\rm H}$ increases with collision centrality at $\sqrt{s_{\rm NN}}$=19.6 and 27 GeV, as expected from an angular-momentum-driven phenomenon.

More…

Observation of Global Spin Alignment of $\phi$ and $K^{*0}$ Vector Mesons in Nuclear Collisions

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Nature 614 (2023) 244-248, 2023.
Inspire Record 2063245 DOI 10.17182/hepdata.129067

Notwithstanding decades of progress since Yukawa first developed a description of the force between nucleons in terms of meson exchange, a full understanding of the strong interaction remains a major challenge in modern science. One remaining difficulty arises from the non-perturbative nature of the strong force, which leads to the phenomenon of quark confinement at distances on the order of the size of the proton. Here we show that in relativistic heavy-ion collisions, where quarks and gluons are set free over an extended volume, two species of produced vector (spin-1) mesons, namely $\phi$ and $K^{*0}$, emerge with a surprising pattern of global spin alignment. In particular, the global spin alignment for $\phi$ is unexpectedly large, while that for $K^{*0}$ is consistent with zero. The observed spin-alignment pattern and magnitude for the $\phi$ cannot be explained by conventional mechanisms, while a model with a connection to strong force fields, i.e. an effective proxy description within the Standard Model and Quantum Chromodynamics, accommodates the current data. This connection, if fully established, will open a potential new avenue for studying the behaviour of strong force fields.

38 data tables

Global spin alignment of $\phi$ and $K^{*0}$ vector mesons in heavy-ion collisions. The measured matrix element $\rho_{00}$ as a function of beam energy for the $\phi$ and $K^{*0}$ vector mesons within the indicated windows of centrality, transverse momentum ($p_T$) and rapidity ($y$). The open symbols indicate ALICE results for Pb+Pb collisions at 2.76 TeV at $p_{T}$ values of 2.0 and 1.4 GeV/c for the $\phi$ and $K^{*0}$ mesons, respectively, corresponding to the $p_{T}$ bin nearest to the mean $p_{T}$ for the 1.0 – 5.0 GeV/$c$ range assumed for each meson in the present analysis. The red solid curve is a fit to data in the range of $\sqrt{s_{NN}} = 19.6$ to 200 GeV, based on a theoretical calculation with a $\phi$-meson field. Parameter sensitivity of $\rho_{00}$ to the $\phi$-meson field is shown in Ref.5. The red dashed line is an extension of the solid curve with the fitted parameter $G_s^{(y)}$. The black dashed line represents $\rho_{00}=1/3.$

Global spin alignment of $\phi$ and $K^{*0}$ vector mesons in heavy-ion collisions. The measured matrix element $\rho_{00}$ as a function of beam energy for the $\phi$ and $K^{*0}$ vector mesons within the indicated windows of centrality, transverse momentum ($p_T$) and rapidity ($y$). The open symbols indicate ALICE results for Pb+Pb collisions at 2.76 TeV at $p_{T}$ values of 2.0 and 1.4 GeV/c for the $\phi$ and $K^{*0}$ mesons, respectively, corresponding to the $p_{T}$ bin nearest to the mean $p_{T}$ for the 1.0 – 5.0 GeV/$c$ range assumed for each meson in the present analysis. The red solid curve is a fit to data in the range of $\sqrt{s_{NN}} = 19.6$ to 200 GeV, based on a theoretical calculation with a $\phi$-meson field. Parameter sensitivity of $\rho_{00}$ to the $\phi$-meson field is shown in Ref.5. The red dashed line is an extension of the solid curve with the fitted parameter $G_s^{(y)}$. The black dashed line represents $\rho_{00}=1/3.$

Example of combinatorial background subtracted invariant mass distributions and the extracted yields as a function of $\cos \theta^*$ for $\phi$ and $K^{*0}$ mesons. \textbf{a)} example of $\phi \rightarrow K^+ + K^-$ invariant mass distributions, with combinatorial background subtracted, integrated over $\cos \theta^*$; \textbf{b)} example of $K^{*0} (\overline{K^{*0}}) \rightarrow K^{-} \pi^{+} (K^{+} \pi^{-})$ invariant mass distributions, with combinatorial background subtracted, integrated over $\cos \theta^*$; \textbf{c)} extracted yields of $\phi$ as a function of $\cos \theta^*$; \textbf{d)} extracted yields of $K^{*0}$ as a function of $\cos \theta^*$.

More…

Light Nuclei Collectivity from $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au Collisions at RHIC

The STAR collaboration Abdallah, M.S. ; Aboona, B.E. ; Adam, J. ; et al.
Phys.Lett.B 827 (2022) 136941, 2022.
Inspire Record 1986611 DOI 10.17182/hepdata.115569

In high-energy heavy-ion collisions, partonic collectivity is evidenced by the constituent quark number scaling of elliptic flow anisotropy for identified hadrons. A breaking of this scaling and dominance of baryonic interactions is found for identified hadron collective flow measurements in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions. In this paper, we report measurements of the first- and second-order azimuthal anisotropic parameters, $v_1$ and $v_2$, of light nuclei ($d$, $t$, $^{3}$He, $^{4}$He) produced in $\sqrt{s_{\rm NN}}$ = 3 GeV Au+Au collisions at the STAR experiment. An atomic mass number scaling is found in the measured $v_1$ slopes of light nuclei at mid-rapidity. For the measured $v_2$ magnitude, a strong rapidity dependence is observed. Unlike $v_2$ at higher collision energies, the $v_2$ values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number. Calculations by the Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus nucleon coalescence, are in good agreement with our observations, implying baryonic interactions dominate the collective dynamics in 3 GeV Au+Au collisions at RHIC.

22 data tables

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $p$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The rapidity and $p_{T}$ dependencies of $v_{1}$ for $d$ in 10-40% mid-central Au+Au collisions at 3 GeV.

The $p_{T}$ dependencies of $v_{1}$ within $-0.1<y<0$ for $t$ in 10-40% mid-central Au+Au collisions at 3 GeV.

More…