The inclusive reactions h+p→ φ +X, (h= π ±, ,K ± ,p ± ), are studied for 0⪅ x F ⪅0.3 and p ⊥ ⩽ 1 GeV at 93 and and 63 GeV incident momentum. Differential cross sections d σ /d p ⊥ 2 and dσ /d x F are presented and are compared with predictions of the naive parton model.
No description provided.
No description provided.
No description provided.
Inclusive ϕ-meson production has been measured for 100 GeV/cK−,\(\bar p\) andp incident on a Be target. Differential cross sectionsdσ/dxF anddσ/dp⊥2 are presented in the interval 0.075<xF<0.225 and 0<p⊥<1 GeV/c respectively. The shape of thedσ/dxF distributions agrees with predictions from a quark fusion model. Comparison with cross sections measured on a hydrogen target in the samexF andp⊥ range suggest a linearA-dependence fromA=1 toA=9.
No description provided.
An experiment has been performed to search for associated hadronic production of charmed mesons, using a large-aperture forward magnetic spectrometer setup in a π − beam at the CERN SPS. A prompt electron trigger was used to select events containing a pair by charmed particles. D mesons have been identified by reconstruction of hadronic decay modes such as Kπ, Kππ. Data have been taken at 120, 175, and 200 GeV, The D D cross section measured at 175 200 GeV is σ( D D ) = (48 ± 15) μ b with a systematic uncertainty of ±50%. The energy dependence of the cross section is measured to be σ( D D ) [120 GeV )/σ( D D [175/200 GeV ] = 0.62 ± 0.34 .
No description provided.
No description provided.
A search has been made for the hadronic production of charmed baryons and mesons with a large aperture forward magnetic spectrometer using 150 GeV protons originating from the CERN-SPS. A prompt electron trigger was used as a signature for charm. Upper limits at 90% confidence level have been obtained for the production of Λ c + D 0 , D 0 D + and D − : σ(Λ c ) ⩽ 8 μ b , σ( D 0 ) ⩽ 64 μ b , σ( D 0 ) < 37 μ b , σ( D + ) ⩽ 51 μ b and σ( D − ) ⩽ 49 μ b per nucleon, assuming linear A dependence. Systematic errors due to uncertainties in branching ratios and to model dependence of the acceptance calculation are discussed.
No description provided.
We present an analysis of theKs0Ks0 system produced in the reaction π−p→Ks0Ks0n at 63 GeV based on ∼700 events in the kinematical region of |t|<0.5 GeV2. We concentrate on masses between 1,200 and 1,600 MeV where a double maximum structure is observed. Performing an amplitude analysis in this mass interval we find thatS,D0 andD+ waves contribute to the mass spectrum at approximately equal strength. The peaks are attributed to spin 2 waves. However, we failed to explained them by interferingf(1270),A2(1310) andf′(1520) resonances alone. While the first peak can be associated withf(1270)−A2(1310) production, an additional tensor meson is needed with mass of ∼1410 MeV and a narrow width for a description of the second one. The analysis as well as the energy dependence deduced from some publishedKs0Ks0 mass spectra suggests this object to be dominantly produced by a natural parity exchange. Because the 2++\(q\bar q\) nonet is already complete the nature of the new tensor meson is an open question.
No description provided.
The reactions\(K^ -Be \to {}^(\bar K^) *^0 (890)X,\pi ^ -Be \to {}^(\bar K^) *^0 (890)X\), have been studied in a 175 GeV unseparated hadron beam in the kinematic range 0<xF<1.0 andpT2<5 GeV2. Integrated cross-sections and the dependence of the cross-sections on the longitudinal and transverse momentum are presented, together with quark counting rules predictions. The nuclear dependence ofK− fragmentation intoK*0(890) with respect to Feynmanx is investigated from hydrogen to beryllium.
No description provided.
No description provided.
No description provided.
We present single inclusive π±, π0 andK± spectra in the forward fragmentation region (x>0.2,pT<1.5 GeV/c) as well as correlations between two charged particles. The data were recorded in an unseparated negative hadron beam at the CERN SPS using a large acceptance forward spectrometer. Our maasurements are compared in detail with several models which emphasise the role of the beam valence quarks in this production process. The connection to measurements at largepT is also investigated.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
ERRORS INCLUDE SYSTEMATIC ERRORS BUT NOT OVERALL NORMALISATION UNCERTAINTY OF 8PCT.
We present a study of leading protons and antiprotons inp-nucleus and\(\bar p\)-nucleus on Be, Cu, Ag, W, and U targets. The experiment was performed at the CERN-SPS at a beam energy of 120 GeV. For all targets a suppression of secondary antiprotons with respect to protons is observed. The difference between the\(\bar p\) andp spectra increases with decreasing χ-values and the effect is stronger for heavier nuclei. The features of the data are qualitatively consistent with multiple-collisions modesls. The data are analysed in terms of a dual parton model which gives a satisfactory description of leadingp and\(\bar p\) spectra.
No description provided.
We have measured the differential and total cross sections ofD meson production in 200 GeV π−-beryllium interactions, using a sample of 48 fully reconstructed and nearly background-freeD mesons in the decay channelsK∓π±,K∓π±π± andK∓π∓π±π±. A single electron trigger has been used to select events containing a pair of charmed particles. A vertex telescope of 6 silison microstrip detectors allowed the reconstruction of tracks of charged secondaries and the reconstruction of primary and decay vertices with high precision. The ratio of branching fractions for\(\mathop {D^0 }\limits^{( - )}\to K^ \mp\pi ^ \pm\) to\(\mathop {D^0 }\limits^{( - )}\to K^ \mp\pi ^ \mp\pi ^ \pm\pi ^ \pm\), and an upper limit for\(D^0- \bar D^0 \) mixing are presented.
'leading' D-mesons, i.e. D-mesons, containing quarks, from PI- beam. Also AD0-mesons from. D*- decays.
'non-leading' D-mesons.
No description provided.
New data are presented on charged particle multiplicity distributions for non single-diffractive events produced at CM energies s = 200 and 900 GeV . The data were obtained at the CERN antiproton-proton collider operated in a new pulsed mode. The multiplicity distributions are very well described by a negative binomial distribution. The highest energy data show no sign of approaching scaling, confirming our earlier results on the breaking of KNO scaling. The energy variation of the average charged multiplicity can be fitted to a quadratic in ln s or a s 0.13 dependence.
Figure gives uncorrected multiplicity distributions. Here we give the corrected distributions. Data supplied by D. Ward.
Results for multiplicity moments based on negative binomial fit to corrected data. Errors reflect both statistical and systematic effects. Results from earlier data at 546 Gev cm energy are also given.
C moments for corrected data where CQ=<N**Q>/<N>**Q.