The reaction π − p → ηφ has been studied at 1.8 GeV/ c incident pion momentum using the Bologna-CERN NBC set-up, in order to investigate the electromagnetic decay mode φ → ηγ . We observed (27 ± 6) events, yielding a branching ratio Γ(φ → ηγ) Γ(φ → total ) = (7.3 ± 1.9)% . The theoretical implications of this result are discussed.
ASSUMING THE TOTAL PHI CROSS SECTION IS 35 +- 5 MUB, THIS YIELDS THE BRANCHING RATIO OF (7.3 +- 1.9) PCT FOR PHI --> ETA GAMMA.
The reaction K − d → K − π + π − n p s was studied in a bubble chamber experiment. The cross section was measured to be 1.3 ± 0.2 mb. The final state is dominated by K ∗0 (890) , K ∗0 (1420) and Δ − (1236) production. Partial cross sections, differential cross sections and decay angular distributions of the K ∗0 (890) δ − (1236) final state were found to give good agreement with the predictions of Białas and Zalewski obtained from the quark model. The final state K − π + Δ − (1236) is analyzed by use of the Van Hove plot.
DEUTERIUM CROSS SECTIONS WITH SPECTATOR PROTON. PROBABLY NOT CORRECTED FOR K* BRANCHING RATIO INTO <K- PI+>.
SLOPE IS 5.75 +- 0.46 GEV**2 FOR -TP < 0.4 GEV**2.
GOTTFRIED-JACKSON FRAME.
Lambda production is studied in K − p interactions at 10.1 GeV/ c , where the dominant reaction is K − p → Λ + pions. General characteristics such as the distributions of the double differential cross section in the lab system, of the variable x = p L ∗ p max ∗ , of p ⊥ 2 and of the missing mass to the lambda are presented. Total cross sections for Λ production and for the various channels are given. Differential cross sections d σ d t , d σ d t′ and d σ d u′ are presented. Forward and backward peaks are observed in the d σ d t′ and d σ d u′ distributions, respectively. It is found that the exponential slope of these distributions decreases with increasing missing mass to the lambda and, for d σ d t′ , also for increasing multiplicity in the final state. The polarization of the lambdas is studied as a function of multiplicity, p L ∗ , (Λπ ± ) effective mass, t ′ and u ′. The forward lambdas show
No description provided.
POSSIBLE FORWARD DIP.
We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .
THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.
Cross sections are presented for the K + p interacttions with 2, 3, 4 and 5 particles in the final state for incident momenta between 2.1 and 2.7 GeV/c. The results are compared with those from other experiments at nearby momenta.
Axis error includes +- 0.0/0.0 contribution (?////).
A study of π − p → K ∗ Λ and π − p → K ∗ Σ° at 3.9 GeV /c indicates that the main features of both reactions can be interpreted in terms of simple exchange processes, the first involving both natural and unnatural exchange, the second showing evidence for natural parity exchange only.
No description provided.
Results are presented on effective-mass distributions, differentisl cross sections and longitudinal c.m. momentum distributions for the channels K − p → K − p π o , K o p π − and K − π + n , obtained from a sample of approximately 28 000 inelastic two-pronged interactions at 4.2 GeV/ c incident momentum. The results are in satisfactory agreement with the prediction of a generalized Veneziano-model corrected for (non-dual) π -and pomeron exchange. For the channel K − pπ o pomeron exchange contributes about 20% of the cross section. In the channel K − π + n the dual, pion and pomeron contributions are responsible for resp. 15%, 65% and 20% of the total cross section.
BREIT-WIGNER FITS.
MEASURED OFF GRAPH.
MEASURED OFF GRAPH.
Approximately 21 000 four-prong pp interactions at 13.1 GeV/ c have been studied using the CERN 2m hydrogen bubble chamber. The following reactions have been analyzed pp→ppπ + π − (1) pp→ppπ + π − π 0 (2) pp→ppπ + π + π − (3) The Δ-production is the dominant feature. We also observed the pππ decay of the N ∗ (1470) and N ∗ (1690). The ϱis weakly produced in the three reactions. The η and the α are observed in the reaction (2) and the presence of a ω isobar is discussed. Then the kinematical characteristics of the final particles are described.
NORMALIZED TO A TOTAL CROSS SECTION OF 39.6 +- 0.2 MB.
RESONANCE PRODUCTION ESTIMATED BY CUTS WITH MONTE-CARLO AND HAND-DRAWN PHASE SPACE DISTRIBUTIONS.
Multihadronic production has been observed at the Adone e + e − storage ring, in the c.m. energy range 1.4 - 2.4 GeV. The cross sections for the reactions e + + e − → 2 π ± + nπ o (1 ⩽ n ⩽ 4) and e + + e − → (4 π ± + nπ ± ) (0 ⩽ n ⩽ 2) have been measured, assuming that the produced particles are only pions with a pure phase space momentum distribution.
No description provided.
Final results for 3678 six-prong π+p events at 8 GeV/c are presented. Single-particle distributions are compared with the predictions of the Chan-Loskiewicz-Allison model and the phenomenological model of the F(t) function. Differences between the transverse momenta of the π+ and π− and between the transverse momenta of secondaries emitted forward and backward in the c.m. system are observed. Cross sections for production of the ρ0, ρ+, ρ−, η, ω0, X0, and D0 mesons and the N33*++ and N33*− isobars are given, together with upper limits for some other resonances. The D0 meson is observed in the seven-body channel in the ηπ+π− system, with some evidence for the cascade decay D0→δ±π∓→ηπ+π−. The branching ratio (f0→2π+2π−)(f0→2π) is determined to be (2.2−2.2+4.5)%. Upper limits for the decay of A mesons into X0π systems are quoted. The cross section for the two-body reaction π+p→N33*++X0 is determined to be 30 ± 13 μb, from which the η0−X0 mixing angle is derived. Associated production of N33*++ and ρ0 in the six-body channel and of N33*++, ρ0, and ω0 in the seven-body channel is studied, and the cross sections for reactions involving simultaneous production of these resonances are estimated. The Goldhaber-Goldhaber-Lee-Pais effect is studied and shown to be strong in the six-body channel, especially for selected events with low energy of the pion system.
TOTAL NUMBER EVENTS=504. DATA FROM T 1.
TOTAL NUMBER EVENTS=1075. DATA FROM T 1.
TOTAL NUMBER EVENTS=425. DATA FROM T 1.