Search for dark matter produced in association with a dark Higgs boson in the $b\bar{b}$ final state using $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 134 (2025) 121801, 2025.
Inspire Record 2808023 DOI 10.17182/hepdata.158372

A search is performed for dark matter particles produced in association with a resonantly produced pair of $b$-quarks with $30< m_{bb}<150$ GeV using 140 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. This signature is expected in extensions of the Standard Model predicting the production of dark matter particles, in particular those containing a dark Higgs boson $s$ that decays into $b\bar{b}$. The highly boosted $s \rightarrow b\bar{b}$ topology is reconstructed using jet reclustering and a new identification algorithm. This search places stringent constraints across regions of the dark Higgs model parameter space that satisfy the observed relic density, excluding dark Higgs bosons with masses between $30$ and $150$ GeV in benchmark scenarios with $Z'$ mediator masses up to $4.8$ TeV at 95% confidence level.

29 data tables

Data and predicted SM background yields after a simultaneous background-only fit to each resolved (Res.) and merged (Mer.) SR and CR $E_T^{\text{miss}}$ category.

The $m_{bb}$ distributions for data and SM expectations in the Resolved SR with 150 GeV < $E_T^{\text{miss}}$ < 200 GeV region after a background-only simultaneous fit to data. Two signal distributions are also included.

The $m_{bb}$ distributions for data and SM expectations in the Resolved SR with 200 GeV < $E_T^{\text{miss}}$ < 350 GeV region after a background-only simultaneous fit to data. Two signal distributions are also included.

More…