Closing the Door for Dark Photons as the Explanation for the Muon g-2 Anomaly

The PHENIX collaboration Adare, A. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 91 (2015) 031901, 2015.
Inspire Record 1313628 DOI 10.17182/hepdata.143253

The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment $(g-2)_\mu$ deviates from SM calculations by 3.6$\sigma$. Several theoretical models attribute this to the existence of a "dark photon," an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, $U$, in $\pi^0,\eta \rightarrow \gamma e^+e^-$ decays and obtained upper limits of $\mathcal{O}(2\times10^{-6})$ on $U$-$\gamma$ mixing at 90% CL for the mass range $30<m_U<90$ MeV/$c^2$. Combined with other experimental limits, the remaining region in the $U$-$\gamma$ mixing parameter space that can explain the $(g-2)_\mu$ deviation from its SM value is nearly completely excluded at the 90% confidence level, with only a small region of $29<m_U<32$ MeV/$c^2$ remaining.

5 data tables

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

The experimental sensitivity and observed limit on the number of dark photon candidates as a function of the assumed dark photon mass.

More…