Date

Collaboration

Measurement of differential cross sections for Z boson pair production in association with jets at $\sqrt{s}=$ 8 and 13 TeV

The CMS collaboration Sirunyan, Albert M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 789 (2019) 19-44, 2019.
Inspire Record 1680022 DOI 10.17182/hepdata.89171

This Letter reports measurements of differential cross sections for the production of two Z bosons in association with jets in proton-proton collisions at $\sqrt{s} =$ 8 and 13 TeV. The analysis is based on data samples collected at the LHC with the CMS detector, corresponding to integrated luminosities of 19.7 and 35.9 fb$^{-1}$ at 8 and 13 TeV, respectively. The measurements are performed in the leptonic decay modes ZZ $\to\ell^+ \ell^- \ell'^+ \ell'^-$, where $\ell,\ell' =$ e, $\mu$. The differential cross sections as a function of the jet multiplicity, the transverse momentum $p_\mathrm{T}$, and pseudorapidity of the $p_\mathrm{T}$-leading and subleading jets are presented. In addition, the differential cross sections as a function of variables sensitive to the vector boson scattering, such as the invariant mass of the two $p_\mathrm{T}$-leading jets and their pseudorapidity separation, are reported. The results are compared to theoretical predictions and found in good agreement within the theoretical and experimental uncertainties.

16 data tables

Data from Fig. 2 upper right panel. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ differential cross section at $\sqrt{s} = 13$ TeV as a function of the jet multiplicity with $|\eta_{j}| < 4.7$.

Data from Fig. 3 upper right panel. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ normalized differential cross section at $\sqrt{s} = 13$ TeV as a function of the jet multiplicity with $|\eta_{j}| < 4.7$.

Data from Fig. 2 lower right panel. The $\textrm{pp} \to \textrm{ZZ}\to \ell\ell\ell^{\prime}\ell^{\prime}$ differential cross section at $\sqrt{s} = 13$ TeV as a function of the jet multiplicity with $|\eta_{j}| < 2.4$.

More…

Measurement of the cross-section for electroweak production of dijets in association with a $Z$ boson in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, M. ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 775 (2017) 206-228, 2017.
Inspire Record 1627873 DOI 10.17182/hepdata.77267

The cross-section for the production of two jets in association with a leptonically decaying Z boson ($Zjj$) is measured in proton-proton collisions at a centre-of-mass energy of 13 TeV, using data recorded with the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 3.2 fb$^{-1}$. The electroweak $Zjj$ cross-section is extracted in a fiducial region chosen to enhance the electroweak contribution relative to the dominant Drell-Yan $Zjj$ process, which is constrained using a data-driven approach. The measured fiducial electroweak cross-section is $\sigma^{Zjj}_{EW}= 119\pm 16 (\mathrm{stat.}) \pm 20 (\mathrm{syst.})\pm 2 (\mathrm{lumi.})$ for dijet invariant mass greater than 250 GeV, and $34.2\pm 5.8 (\mathrm{stat.})\pm 5.5 (\mathrm{syst.})\pm 0.7 (\mathrm{lumi.})$ for dijet invariant mass greater than 1 TeV. Standard Model predictions are in agreement with the measurements. The inclusive $Zjj$ cross-section is also measured in six different fiducial regions with varying contributions from electroweak and Drell-Yan $Zjj$ production.

4 data tables

Fiducial regions definitions

Measured and predicted inclusive Zjj production cross-sections in the six fiducial regions

Measured and predicted EW-Zjj production cross-sections in the EW-enriched fiducial regions with and without an additional kinematic requirement of $m_{jj} > $ 1 TeV

More…

Version 2
Measurement of vector boson scattering and constraints on anomalous quartic couplings from events with four leptons and two jets in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 774 (2017) 682-705, 2017.
Inspire Record 1615207 DOI 10.17182/hepdata.81936

A measurement of vector boson scattering and constraints on anomalous quartic gauge couplings from events with two Z bosons and two jets are presented. The analysis is based on a data sample of proton-proton collisions at sqrt(s) = 13 TeV collected with the CMS detector and corresponding to an integrated luminosity of 35.9 inverse femtobarns. The search is performed in the fully leptonic final state ZZ to lll'l', where l, l' = e, mu. The electroweak production of two Z bosons in association with two jets is measured with an observed (expected) significance of 2.7 (1.6) standard deviations. A fiducial cross section for the electroweak production is measured to be sigma[EW](pp -> ZZjj -> lll'l'jj) = 0.40 -0.16 +0.21 (stat) -0.09 +0.13 (syst) fb, which is consistent with the standard model prediction. Limits on anomalous quartic gauge couplings are determined in terms of the effective field theory operators T0, T1, T2, T8, and T9. This is the first measurement of vector boson scattering in the ZZ channel at the LHC.

9 data tables

Measured and expected fiducial cross-sections.

Data from Table 2. Observed and expected exclusion limits for the aQGC parameters at 95% CL, without any form factors.

Data from Fig.4. Observed yields of four lepton invariant mass distribution. The last bin includes overflow.

More…

Measurement of the cross section for electroweak production of Z gamma in association with two jets and constraints on anomalous quartic gauge couplings in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 770 (2017) 380-402, 2017.
Inspire Record 1512924 DOI 10.17182/hepdata.77543

A measurement is presented of the cross section for the electroweak production of a Z boson and a photon in association with two jets in proton-proton collisions at sqrt(s)= 8 TeV. The Z bosons are identified through their decays to electron or muon pairs. The measurement is based on data collected with the CMS detector corresponding to an integrated luminosity of 19.7 inverse femtobarns. The electroweak contribution has a significance of 3.0 standard deviations, and the measured fiducial cross section is 1.86 +0.90/-0.75 (stat) +0.34/-0.26 (syst) +/- 0.05 (lumi) fb, while the summed electroweak and quantum chromodynamic total cross section in the same region is observed to be 5.94 +1.53/-1.35 (stat) +0.43/-0.37 (syst) +/- 0.13 (lumi) fb. Both measurements are consistent with the leading-order standard model predictions. Limits on anomalous quartic gauge couplings are set based on the Z gamma mass distribution.

1 data table

The measured fiducial cross section of EW ZGamma+2Jets process.


Measurement of electroweak-induced production of W gamma with two jets in pp collisions at sqrt(s)=8 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 06 (2017) 106, 2017.
Inspire Record 1507095 DOI 10.17182/hepdata.78254

A measurement of electroweak-induced production of W gamma and two jets is performed, where the W boson decays leptonically. The data used in the analysis correspond to an integrated luminosity of 19.7 inverse femtobarns collected by the CMS experiment in sqrt(s) = 8 TeV proton-proton collisions produced at the LHC. Candidate events are selected with exactly one muon or electron, missing transverse momentum, one photon, and two jets with large rapidity separation. An excess over the hypothesis of the standard model without electroweak production of W gamma with two jets is observed with a significance of 2.7 standard deviations. The cross section measured in the fiducial region is 10.8 +/- 4.1 (stat) +/- 3.4 (syst) +/- 0.3 (lumi) fb, which is consistent with the standard model electroweak predictions. The total cross section for W gamma production in association with 2 jets in the same fiducial region is measured to be 23.2 +/- 4.3 (stat) +/- 1.7 (syst) +/- 0.6 (lumi) fb, which is consistent with the standard model prediction from the combination of electroweak- and quantum chromodynamics-induced processes. No deviations are observed from the standard model predictions and experimental limits on anomalous quartic gauge couplings f[M, 0-7] / Lambda^4, f[T, 0-2] / Lambda^4, and f[T, 5-7] / Lambda^4 are set at 95% confidence level.

2 data tables

Summary of the measured and predicted observables.

Observed and expected shape-based exclusion limits for the aQGC parameters at 95% CL, without any form factors.


Measurement of the WZ production cross section in pp collisions at sqrt{s} = 7 and 8 TeV and search for anomalous triple gauge couplings at sqrt{s} = 8 TeV

The CMS collaboration Khachatryan, V. ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 236, 2017.
Inspire Record 1487288 DOI 10.17182/hepdata.89400

The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9 inverse femtobarns collected at sqrt(s)= 7 TeV, and 19.6 inverse femtobarns at sqrt(s)= 8 TeV. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for 71 < m[Z] < 111 GeV are sigma(pp to WZ; sqrt(s)= 7 TeV) = 20.14 +/- 1.32 (stat) +/- 1.13 (syst) +/- 0.44 (lumi) pb and sigma(pp to WZ; sqrt(s)= 8 TeV) = 24.09 +/- 0.87 (stat) +/- 1.62 (syst) +/- 0.63 (lumi) pb. Differential cross sections with respect to the Z boson pt, the leading jet pt, and the number of jets are obtained using the sqrt(s)= 8 TeV data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.

5 data tables

The measured WZ cross section for 71 < mZ < 111 GeV using 7 TeV data. The theory uncertainty only includes QCD scales variations.

The measured WZ cross section for 71 < mZ < 111 GeV using 8 TeV data. The theory uncertainty only includes QCD scales variations.

Differential cross section as function of the Z boson transverse momentum.

More…