Inclusive and semi-inclusive cross sections and distributions of γ's and π0's inK+p interactions at 70 GeV/c are presented. The results are compared to other experiments and to the Lund model for low-pT hadron collisions.
No description provided.
No description provided.
No description provided.
We present final results on inclusive production ofK*+(890),K*+(1430) andK*−(890) in\(\bar K^ +p\) interactions at 32 GeV/c, based on a statistics of ∼27 events/μb. Total cross sections,pT-andx-dependence of inclusive distributions are compared with experiments at other energies and with the Lund fragmentation model. Spin density matrix elements of theK*+(890) are also discussed. The results suggest that “recombination” of both initial state valence quarks\(\bar s\) andu of theK+ intoK*+(890), responsible in the Lund model for ∼45% of theK*+(890) cross section, is strongly suppressed.
No description provided.
No description provided.
No description provided.
The production properties ofKs0,\(\bar \Lambda\) andK+p interactions at 32 GeV/c are investigated using the final statistics of the experiment. We present total and semi-inclusive cross sections and aver-age multiplicities. Estimates are given of the diffractive dissociation contributions to total and differential cross sections. Thex-,pT−, and transverse mass dependence of inclusive and semi-inclusive distributions is discussed as well as properties of “prompt”Ks0's. The ratio of “prompt”K890+ (K8900) to “prompt”K0 cross sections is measured to be 1.03±0.12 (0.98±0.17). From a comparison of\(\bar \Lambda\) production inK±p interactions at 32 GeV/c, we estimate a strange sea-quark suppression of 0.26 ±0.02. The double differential cross sections ofKs0's is studied as a function of Feynman-x andpT2, and a Triple-Regge fit performed. The data are compared in detail to versions of the Lund-model for low-pT hadronic collisions.
No description provided.
No description provided.
No description provided.
A detailed study ofJ/ψ hadronic production has been performed in a high statistics experiment (more than 1.5 106J/ψ observed in their dimuon decay mode). Data have been taken with incident π±,K±,p±, on hydrogen and platinum targets, at 150, 200 and 280 GeV/c. We find from the observed nuclear dependance of the cross sections, that about 18% of theJ/ψ are produced diffractively. Using known structure functions of the quarks in the nucleon and in the pion, we derive estimations for the gluon structure functions.
No description provided.
No description provided.
No description provided.
We have studied the reactionspp→ppπ+π-,K+p→K+pπ+π−π, π+p→ π+,pπ+π− and π−p →π+π− at 147 GeV/c using the 30-inch Fermilab hybrid system. All four reactions were detected with the same apparatus and analyzed in the same way. The energy dependence of the channel cross section was found to beAp−0.6+B for thepp reaction andAp−1+B for the other three. About 90% of the cross section at 147 GeV/c can be accounted for by either beam or target diffraction. Some of the remaining cross section may come from double Pomeron exchange reactions which we tried to isolate. We have tested the hypothesis of a factorizable Pomeron and our data indicates a violation of this hypothesis. We show that the 3π mass enhancement in the mass region 1.2–1.4 GeV is diffractively produced in the π± beam reactions. Fourprong, four-constraint and six-prong, four-constraint cross sections are reported.
No description provided.
No description provided.
CROSS SECTIONS FOR DIFFRACTION DISSOCIATION OF BEAM. FEYNMAN X OF OUTGOING PROTON <-0.96.
Measurements of the K - p and K + p elastic differential cross sections at 20 and 50 GeV/ c , respectively, have been made in the momentum transfer range 0.7 < ∥ t ∥ < 8.0 GeV/ c .
No description provided.
No description provided.
A description is given of an experiment to study elastic scattering of π ± , K ± and p on protons at c.m. scattering angles from 45° to 100° at incident laboratory momenta 20 GeV/ c and 30 GeV/ c . The corresponding t range is from −6.2 (GeV/ c ) 2 to −28 (GeV/ c ) 2 . There are no previous observations for these reactions in this t range. High intensity and large geometrical acceptance were required in order to measure the low cross sections. The experiment used a double-arm spectrometer. MWPCs were used for reconstruction, and threshold and differential Čerenkov counters for identification. Scintillation counters, Čerenkov counters and a hadron calorimeter were used in the trigger. The trigger logic utilized specially designed matrices and a hard wired microprocessor. The π − p elastic scattering cross sections follow approximately the dimensional counting rule from 3.5 GeV/ c .and up to 30 GeV/ c . The cross sections decrease by seven orders of magnitude in this energy range. The data is compared to quark models. None of these models give a comprehensive description of the results. However, some modifications to these models improve their consistency with the data.
EARLIER RESULTS GIVEN IN 'A'.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
.
.
.
Energy, charge and strangeness flow inK+p interactions at 32 and 70 GeV/c, and π+p interactions at 32 GeV/c are studied in terms of the angular variable λ=|x|/pT. The data ondQ/dλ anddE/dλ show only a weak indication of scale breaking between 32 and 70 GeV/c. For inclusive “non-diffractive”, inclusive “diffractive” and exclusive “non-diffractive” jets, the fraction of charge in any angular region ΔΩ away from the central region is found to be proportional to the energy fraction in the same interval. The data ondQ/dE versus λ are compatible with some versions of dual-sheet models and agree also with the LUND Monte-Carlo model. The data are also compared with\(v(\bar v)p\) interactions in BEBC. In exclusive channels the average ratiodQ/dS=0.78±0.04 is consistent, in the framework of fragmentation models, with a larger probability for the fragmentation of the\(\bar s\)-valence quark than theu-valence quark in theK+-meson.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.
CHARGE FLOW IN NONDIFFRACTIVE PROTON-LIKE AND KAON-LIKE JETS.