The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.
'TABLE'. 'BIN'.
'TABLE'. 'BIN'.
'TABLE'. 'BIN'.
Observation of 16 μ + μ − pairs of invariant mass greater than 2.7 GeV/ c 2 in the reaction pp → μ + μ − + anything at s = 52 GeV at the CERN Intersecting Storage Rings (ISR) is reported. These events can be interpreted as originating from J(3.1) decay into μ + μ − . Their p T distribution suggests a hadronic production. The cross section for J production is given and compared to the cross section for single lepton production. We conclude that J(3.1) production cannot fully account for single lepton production.
No description provided.
Differential and channel cross sections and hyperon polarizations are presented for the reactions K L o p → K S o p, π + Λ o , and π + Σ o at an average beam momentum of 550 MeV/ c . These data provide constraints on KN and K N amplitudes obtained from charged kaon reactions and reject one of the S = +1, I = 0 and one of the S = -1, I = 1 phase shift solutions.
No description provided.
Results are presented of a bubble chamber experiment on K − p elastic scattering at 14.3 GeV/ c , in four-momentum transfer range 0.04 < | t | < 2.74 GeV 2 using an initial set of 40 000 events. The total elastic cross section is (2.96 ± 0.10) mb. The results are compared with K + p elastic scattering data at 13.8 GeV/ c , and the effective Regge trajectory is calculated using K − p data from 5 to 100 GeV/ c .
FOR -T < 0.04 GEV**2, CROSS SECTION WAS EXTRAPOLATED TO THE OPTICAL POINT WITH -0.055+-0.040 FOR THE REAL/IMAGINARY RATIO OF THE FORWARD AMPLITUDE.
No description provided.
The differential cross sections of the combined elastic and break-up K − d reaction have been measured at 1.21, 1.42 and 2.61 GeV/ c incident K − momentum. The measurements have been performed at the CERN PS using multiwire proportional chambers. The values of the invariant momentum transfer t explored (0.0005<| t |<0.1 GeV 2 ) include the Coulomb-nuclear interference region. The differential cross sections have been analysed in the framework of the Glauber impact-parameter formalism. The observed interference effects have been used to derive the ratio of the real to imaginary part of the forward K − n nuclear amplitude.
SUM OF COHERENT AND BREAK-UP SCATTERING.
SUM OF COHERENT AND BREAK-UP SCATTERING.
SUM OF COHERENT AND BREAK-UP SCATTERING.
The fragmentation of the neutron into p π − induced by incident K + of 8.25 GeV/ c is studied using data from the CERN 2 m deuterium bubble chamber and compared with data at 4.6 and 12 GeV/ c . The p π − low-mass enhancement below 1.85 GeV is analyzed and the major part exhibits the properties expected for diffraction dissociation. The presence of resonances is discussed. The data are fairly well represented by a double Regge exchange model involving pion and pomeron exchanges. The violation of the s -channel and t -channel helicity conservation is observed and compared to the s -channel description of Humble.
INTERCEPT AND SLOPE OF DIFFERENTIAL CROSS SECTION FOR -TP < 0.24 (0.48 FOR N1700) GEV**2.
Inclusive and semi-inclusive ρ 0 production are studied in 205 GeV/ c pp interactions. The number of ρ 0 per inelastic event is 0.33 ± 0.06, so that (13 ± 2)% of the π − are products of ϱ 0 decay. The ρ 0 are found to be produced mainly near y = 0 and tend to have larger average transverse momentum than do pions.
No description provided.
No description provided.
No description provided.
The inclusive reaction pp → Λ + X ++ at 19 GeV/ c beam momentum has been analyzed in terms of the triple-Regge formalism. A good description of the structure function is achieved for events with | t | < 4 (GeV/ c ) 2 . The effective trajectory obtained from fits to the M 2 / s distribution in different t bins is α R ( t ) = −(0.38 ± 0.11) + (1.15 ± 0.07) t , which holds up to a | t | value of 4 (GeV/ c ) 2 . This is consistent with the K trajectory rather than the K ∗ trajectory which has been reported from other experiments.
No description provided.
No description provided.
No description provided.
We present the first evidence for K ∗ (1780) production in a non-exchange channel. This comes from a study of the reaction K − p → K° π − p at 14.3 GeV/ c . We also present evidence for K ∗ ° (1780) production in the charge exchange channel K − p → K − π + n. No significant K ππ , K ω and K η decay modes are found. The decay angular distribution, the spin-parity assignments and the production mechanism are discussed. With plausible assumptions on the production mechanism, the J P = 3 − spin-parity is favoured.
No description provided.
We present results on the differential cross-sections for the reactions π + p → K + Σ + (1385) and K − p → π − Σ + (1385) at 10 GeV/ c . For the first time, the same equipment has been used in measuring both reactions, in order to obtain good relative normalization. In the region of low t ( t min to −0.3 (GeV/ c ) 2 ) the two differential cross-sections have similar shape, and show a sharp forward dip indicating a dominant helicity flip contribution. However, the magnitudes of the cross-sections are significantly different, indicating substantial exchange degeneracy breaking. We find the ratio of the integrated cross-sections for the reactions K − p → π − Σ + (1385) and π + p → K + Σ + (1385) over the range −0.3 < t ′ < 0.0 (GeV/ c ) 2 to be 2.0 ± 0.2.
TMIN = -0.013 GEV**2.
TMIN = +0.012 GEV**2.