The largest sample ever recorded of $\numub$ charged-current quasi-elastic (CCQE, $\numub + p \to \mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $\frac{d^{2}\sigma}{dT_\mu d\uz}$ for $\numub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $\sigma(E_\nu)$ and single-differential cross section $\frac{d\sigma}{d\qsq}$ on both mineral oil and on carbon by subtracting the $\numub$ CCQE events on hydrogen. The observed cross section is somewhat higher than the predicted cross section from a model assuming independently-acting nucleons in carbon with canonical form factor values. The shape of the data are also discrepant with this model. These results have implications for intra-nuclear processes and can help constrain signal and background processes for future neutrino oscillation measurements.
Flux (neutrinos /cm^2/Protons on Target/50 MeV).
The MiniBooNE $\bar{\nu}_\mu$ CCQE double-differential cross section on mineral oil, together with the shape uncertainty, in units of fb/GeV $(10^{-39}~\mbox{cm}^2/\mbox{GeV})$. Data is given in 0.1 GeV bins of $T_\mu$ (columns) and 0.1 bins of $\,\textrm{cos}\, \theta_\mu$ (rows). Not included in the table is the total normalization uncertainty of 13.0$\%$.
CCQE-like background in units of fb/GeV $(10^{-39}~\mbox{cm}^2)/\mbox{GeV}$ to the MiniBooNE $\bar{\nu}_\mu$ CCQE double-differential cross section on mineral oil. In this configuration, the hydrogen scattering component is treated as signal and is not included in the CCQE-like background.
Charged vector D*+(2010) meson production is studied in a high energy neutrino bubble chamber experiment with mean neutrino energy of 141 GeV. The D*+ are produced in (5.6±1.8)% of the neutrino charged current interactions, indicating a steep increase of cross section with energy. The mean fractional hadronic energy of the D*+ meson is 0.55 ± 0.06.
No description provided.
Data from BEBC experiments are combined to provide large statistics for neutrino interactions. ChargedD* mesons are produced in (1.22±0.25)% of neutrino and (1.01±0.31)% of antineutrino charged current interactions. The mean fraction of the hadronic laboratory energy taken by theD*+ in these events is 0.59±0.03±0.08. Less than 18% of all chargedD* mesons from (anti)neutrino interactions are found to be daughters ofD**0 (at the 90% confidence level).
Mean fractional hadronic energy carried by the D*+- in the laboratory system.
Mean value of the Bjorken scaling variable X.
Rate of charged D* meson production per charged current neutrino interaction.
The reaction $~{12}{\rm C}(\nu_\mu,\mu~-) {\rm X}$ has been measured near threshold using a $\pi ~+$ decay-in-flight $\nu_\mu$ beam from the Los Alamos Meson Physics Facility and a massive liquid scintillator neutrino detector (LSND). In the energy region $123.7 < {\rm E}_\nu < 280$ MeV, the measured spectral shape is consistent with that expected from the Fermi Gas Model. However, the measured flux--averaged inclusive cross section ($(8.3 \pm 0.7 {\rm stat.} \pm 1.6 {\rm syst.}) \times 10~{-40} {\rm cm}~2$) is more than a factor of 2 lower than that predicted by the Fermi Gas Model and by a recent random phase approximation calculation.
No description provided.
This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distrib
No description provided.
No description provided.
No description provided.
Evidence is presented for diffractive production of ρ-mesons and of ρπ-systems invp and\(\bar \nu p\) chargedcurrent interactions. In the (anti-)neutrino energy range 10 GeV<Ev<60 GeV the cross sections for diffractive ρ and diffractive ρπ production are found to be (0.64±0.14 (stat.)±0.08 (syst.))% and (0.28±0.08 (stat.)±0.04 (syst.))% of the charged-current cross section. The diffractive ρπ signal is consistent with being entirely due to diffractivea1 production. However, the data cannot distinguish between diffractivea1 and diffractive nonresonant ρπ production. The experimental distributions ofW, Q2,xBj andyBj for diffractive ρ and ρπ events are consistent with model predictions.
No description provided.
No description provided.
No description provided.
Neutral strange particle production in\(\bar v\) Ne charged current interactions is studied using the bubble chamber BEBC, exposed to the CERN SPS antineutrino wide band beam. From a sample of 1191 neutral strange particles, the inclusive production rates are determined to be (15.7±0.8)% forK0 mesons, (8.2±0.5)% for Λ, (0.4±0.2)% for\(\bar \Lambda \) and (0.6±0.3)% for Σ0 hyperons. The inclusive production properties ofK0 mesons and Λ hyperons are investigated. The Λ hyperons are found to be polarized in the production plane.
No description provided.
No description provided.
No description provided.
Using data onvp and\(\bar vp\) charged current interactions from a bubble chamber experiment with BEBC at CERN, the average multiplicities of charged hadrons and pions are determined as functions ofW2 andQ2. The analysis is based on ∼20000 events with incidentv and ∼10000 events with incident\(\bar v\). In addition to the known dependence of the average multiplicity onW2 a weak dependence onQ2 for fixed intervals ofW is observed. ForW>2 GeV andQ2>0.1 GeV2 the average multiplicity of charged hadrons is well described by〈n〉=a1+a2ln(W2/GeV2)+a3ln(Q2/GeV2) witha1=0.465±0.053,a2=1.211±0.021,a3=0.103±0.014 for thevp anda1=−0.372±0.073,a2=1.245±0.028,a3=0.093±0.015 for the\(\bar vp\) reaction.
No description provided.
No description provided.
No description provided.
The Fermilab 15-ft bubble chamber has been exposed to a quadrupole triplet neutrino beam produced at the Tevatron. The ratio of ν to ν¯ in the beam is approximately 2.5. The mean event energy for ν-induced charged-current events is 150 GeV, and for ν¯-induced charged-current events it is 110 GeV. A total of 64 dimuon candidates (1 μ+μ+, 52 μ−μ+ and μ+μ−, and 11 μ−μ−) is observed in the data sample of approximately 13 300 charged-current events. The number and properties of the μ−μ− and μ+μ+ candidates are consistent with their being produced by background processes, the important sources being π and K decay and punchthrough. The 90%-C.L. upper limit for μ−μ−/μ− for muon momenta above 4 GeV/c is 1.2×10−3, and for momenta above 9 GeV/c this limit is 1.1×10−3. The opposite-sign-dimuon–to–single-muon ratio is (0.62±0.13)% for muon momenta above 4 GeV/c. There are eight neutral strange particles in the opposite-sign sample, leading to a rate per dimuon event of 0.65±0.29. The opposite-sign-dimuon sample is consistent with the hypothesis of charm production and decay.
No description provided.
No description provided.
No description provided.
The production of the meson resonances ϱ(770) (all three charge states), η(550), ω(783) andf2(1270) in\(\bar v\) Ne and ν Ne charged current interactions is investigated in a bubble chamber experiment with BEBC at CERN. Except for thef2, the main features of resonance production are reasonably well described by the Lund model, although the average resonance multiplicities are overestimated by the model by (67±30)%. The average multiplicities of all resonances, including thef2, are well reproduced by a semiempirical model, whose parameters were determined from hadron interaction data.
No description provided.
No description provided.
No description provided.