Cross sections for π − p→n π o at 5.9, 10.1 and 13.8 GeV/ c incident momentum are presented in the angular region from 180 o to u , the crossed four-momentum transfer squared, of −2(GeV) 2 and the energy dependence is discussed. The cross section for π − p→n η o integrated over the same angular region at 5.9 GeV/ c is also presented.
No description provided.
No description provided.
No description provided.
None
No description provided.
Recoil protons from the process γ+p→p+π0 have been detected by nuclear emulsions placed within a hydrogen-gas target and used to measure the differential cross section for production of neutral pions. In this manner protons of energies as low as 5 Mev can be detected at laboratory angles corresponding to emission of a pion at center-of-momentum (c.m.) angles as low as 26°. This experiment thus supplements that of Oakley and Walker which is in the same range of photon energies (240-480 Mev), but is restricted to pion c.m. angles greater than about 70° owing to higher minimum detectable proton energy. Common experimental points provide intercomparison of absolute values. Angular distributions are analyzed in the form dσdΩ=A+Bcosθ+Ccos2θ in the c.m. system. The combined Oakley-Walker and present data give the average value of the ratio AC as -1.60±0.10 in the energy range from 260 to 450 Mev. The coefficient B, which gives the front-back asymmetry, passes through zero below the resonance energy of 320 Mev and is positive at higher energies. These results are consistent with magnetic dipole absorption leading to a state of the pion-nucleon system of angular momentum 32, together with a finite amount of S-wave interference.
Axis error includes +- 7.3/7.3 contribution.