Using about 950000 hadronic events collected during 1991 and 1992 with the ALEPH detector, the ratios r b = α s b α s udsc and r uds = α s uds α s cb have been measured in order to test the flavour independence of the strong coupling constant α s . The analysis is based on event-shape variables using the full hadronic sample, two b -quark samples enriched by lepton tagging and lifetime tagging, and a light-quark sample enriched by lifetime antitagging. The combined results are r b = 1.002±0.023 and r uds = 0.971 ± 0.023.
No description provided.
The measurement of the polarisation transfer to the proton in the reactions\(H(\vec e,e'\vec p)\) and\(D(\vec e,e'\vec p)\) performed with longitudinally polarised electrons in quasi-free kinematics is presented. The coincidence measurement was executed atQ2≈8fm−2 using the 855 MeV, c.w. beam of the Mainz Microtron MAMI. The recoil polarisation was determined by means of a carbon analyser. The experiment shows that the binding of the nucleon does not modify the polarisationPx of the recoil proton within an error ofΔPx/Px≈10%. The measured polarisation agrees with recent theoretical predictions. Implications for the measurement of the electric form factor of the neutron using the\(D(\vec e,e'\vec n)\) reaction are discussed.
No description provided.
We have conducted a search for bound states of a negative pion and a number of neutrons (pineuts) using the E814 spectrometer. A beam of Si28 at a momentum of 14.6A GeV/c was used to bombard targets of Al, Cu, Sn, and Pb. We describe our experimental technique, present measured upper limits for pineut production, and discuss the significance of our results.
AUTHORS NAMED CHARGED- BY PINEUT. Here ALL means the total number of interactions.
The vector analyzing power iT11 and the composite observable τ22=T22+T20/ √6 were measured at 10 incident pion energies between 100 and 294 MeV, in an angular range between 50° and 120°. Two different techniques were applied, the detection of the pion with a magnet spectrometer, and the πd coincidence method with scintillation counters. In the case of the first technique also two different target materials were used. Consistency among all data was obtained. The experimental data are compared to Faddeev calculations from one of us (H.G.). The discrepancies between theory and experiment are discussed, and an outlook for further research is given.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
Vector analyzing power iT11 and composite observale TAU22 = T22 + T20/sqrt(6). LiDeut target.
An investigation of the production of neutron-rich isotopes from the fragmentation of Si28 projectiles at plab=14.6 GeV/c per nucleon was performed using the BNL-AGS-E814 spectrometer. We have measured the inclusive production cross sections of neutron-rich fragments (6He, He8, Li8, Li9, Be10, Be11, and B13). We have also measured the transverse momentum distributions for He6 and Li9, and the forward and transverse energy distributions associated with He6 production. The momentum distributions were analyzed in the context of the Goldhaber model. The question of whether the fragments are produced in the decay of the projectile following its electromagnetic excitation was also investigated.
No description provided.
We report on measurements of the differential π±p cross section at pion energies Tπ=32.7, 45.1, and 68.6 MeV. The measurements, covering the angular range 25°≤θlab≤123°, have been carried out at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland, employing the magnet spectrometer LEPS. The absolute normalization of the π±p cross sections have been achieved by relating them to the electromagnetic cross sections of μ±12C scattering. The results are in agreement with those of our preceding measurements at Tπ=32.2 and 45.1 MeV insofar as they overlap with the region of the Coulomb nuclear interference investigated there. A comparison with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, which has formed the basis for the determination of the ‘‘experimental’’ σ term, reveals considerable deviations. These are most pronounced for the π+p cross sections at Tπ=32.7 and 45.1 MeV. Single energy partial wave fits result in S-wave contributions, which are about 1° lower in magnitude then those specified by the KH80 solution. The data at 68.6 MeV are in good agreement with the phase shift analysis.
Statistical and systematic errors are addet in quadrature.
Statistical and systematic errors are addet in quadrature.
Statistical and systematic errors are addet in quadrature.
Simultaneous measurements of inclusive energy spectra and multiplicities of π±, K±, n, p, d, and t following antiproton annihilation on nuclei over a wide energy range and in the case of neutrons down to the evaporative part of the spectra are reported. Thirteen targets in the mass range of A=12–238 were used in a target mass dependent investigation of the fast stage of the antiproton-nucleus interaction. The deduced transferred, preequilibrium and equilibrium excitation energies agree very well with the dynamical picture drawn by the intranuclear cascade model (INC). Ratios of directly emitted neutrons to protons have been determined to be about twice the N/Z ratio in the target nucleus nearly independently of its mass. These unexpected values for this new sensitive observable are not completely understood in the standard framework of INC. Possible effects of isospin and nucleon densities as well as further schemes beyond the INC are discussed.
No description provided.
Systematic measurements of π− elastic scattering on C12 above the Δ-resonance region are reported. The differential cross sections were measured at 610, 710, 790, and 895 MeV/c over an angular range from 5° to 50°. The obtained data were compared with the first-order optical potential model. In the forward region, agreement with the calculation increases with the incident momentum. In the backward region, however, the calculation underestimates the data. The total cross section was extracted, and its energy dependence shows that the effect of Fermi averaging is important.
No description provided.
No description provided.
No description provided.
We have measured a complete isotope distribution of projectile-like nuclear-charge pickup products, formed by bombarding a Al17 target with 790A MeV Xe129 ions. The shape of the cross-section distribution indicates a dominant influence of evaporation processes during the formation of the final cesium fragments observed, thus masking to a large extent the primary processes involved in the charge exchange. We can show, however, that an intranuclear-cascade-plus-evaporation calculation can reproduce the observed yields, and that the effect of Δ-formation during the first stage of the reaction is visible even in the inclusive cross sections. The same model can explain the strong increase in total charge-pickup cross sections with increasing projectile mass noted previously by other authors. It is therefore not necessary to invoke coherent processes to explain this increase as has been suggested previously.
No description provided.
The values of the pion nucleon (πN) σ term, as determined, on the one hand, from experimental pion nucleon scattering by means of dispersion relations and, on the other hand, from baryon masses by means of chiral perturbation theory, differ by 10 to 15 MeV. The origin of this discrepancy is not yet understood. If the difference between the two values is attributed to the scalar current of strange sea quark pairs within the proton, the contribution to the proton mass would be of the order of 120 MeV. The discrepancy may hint at either theoretical deficiencies or an inadequate πN database. In order to provide reliable experimental data we have measured angular distributions of elastic pion proton scattering at pion energies Tπ=32.2 and 44.6 MeV using the magnet spectrometer LEPS located at the Paul-Scherrer-Institute (PSI) in Villigen, Switzerland. From the data covering the region of the Coulomb nuclear interference, the real parts of the isospin-even forward scattering amplitude ReD+(t=0), have been determined as a function of energy. The results have been compared with the predictions of the Karlsruhe-Helsinki phase shift analysis KH80, revealing discrepancies most pronounced for the π+p data. The experimentally determined values for ReD+(t=0), however, support the KH80 prediction (which is based on πN data available in 1979).
Statistical and systematic errors are addet in quadrature.
Statistical and systematic errors are addet in quadrature.