Showing 7 of 27 results
Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum, p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The proton and anti-proton elliptic flow for 0–80% central Au+Au collisions at √sNN= 19.6 GeV, where “(+,-) EP” refers to the event plane reconstructed using all of the charged particles and “(-) EP” refers to the event plane reconstructed using only the negatively charged particles.
Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The difference in $v_{2}$ between particles $(X)$ and their corresponding anti-particles $(X)$ (see legend) as a function of $\sqrt(s_{NN})$ for 0–80$\%$ central Au+Au collisions. The dashed lines in the plot are fits with a power-law function. The error bars depict the combined statistical and systematic errors.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
A systematic study is presented for centrality, transverse momentum ($p_T$) and pseudorapidity ($\eta$) dependence of the inclusive charged hadron elliptic flow ($v_2$) at midrapidity($|\eta| < 1.0$) in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and 4-particle cumulants ($v_2{4}$), are presented in order to investigate non-flow correlations and $v_2$ fluctuations. We observe that the difference between $v_2{2}$ and $v_2{4}$ is smaller at the lower collision energies. Values of $v_2$, scaled by the initial coordinate space eccentricity, $v_{2}/\varepsilon$, as a function of $p_T$ are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider ($\sqrt{s_{NN}}$ = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV). The $v_2(p_T)$ values for fixed $p_T$ rise with increasing collision energy within the $p_T$ range studied ($< 2 {\rm GeV}/c$). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of $v_{2}(p_{T})$. We also compare the $v_2$ results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at Beam Energy Scan (BES) energies are discussed.
The event plane resolutions for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV as a function of collision centrality.
The comparison of $v_2$ as a function of $p_T$ between GF-cumulant and Q-cumulant methods in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV.
The $p_T$ (> 0.2 GeV/c) and $\eta$ ($∣\eta∣$ < 1) integrated $v_2$ as a function of collision centrality for Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.
The $v_2$ as a function of $p_T$ for 20-30% central Au + Au collisions at midrapidity for $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.
$\varepsilon$ (Glauber) as a function of $p_T$ for various collision centralities (10-20%, 30-40% and 50-60%) in Au + Au collisions at midrapidity for $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.
$\varepsilon$ (CGC) as a function of $p_T$ for various collision centralities (10-20%, 30-40% and 50-60%) in Au + Au collisions at midrapidity for $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.
$v_2${EtaSubs} as a function of $p_T$ for various collision centralities (10-20%, 30-40% and 50-60%) in Au + Au collisions at midrapidity for $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.
The $v_2${EP} vs. $\eta$ for 10-40% centrality in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV.
The $v_2${EP} vs. $\eta$ for 10-40% centrality in Au + Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV.
The $v_2${4} vs. $p_T$ at midrapidity for various collision energies ($\sqrt{s_{NN}}$ = 7.7 GeV, 11.5 GeV, 19.6 GeV, 27 GeV and 39 GeV).
The $v_2${4} vs. $p_T$ at midrapidity for $\sqrt{s_{NN}}$ = 62.4 GeV.
The $v_2${4} vs. $p_T$ at midrapidity for $\sqrt{s_{NN}}$ = 200 GeV.
The production of the neutral strange hadrons $K^{0}_{S}$, $\Lambda$ and $\bar{\Lambda}$ has been measured in $ep$ collisions at HERA using the ZEUS detector. Cross sections, baryon-to-meson ratios, relative yields of strange and charged light hadrons, $\Lambda$ ($\bar{\Lambda}$) asymmetry and polarization have been measured in three kinematic regions: $Q^2 > 25 \gev^2$: $5 < Q^2 < 25 \gev^2$: and in photoproduction ($Q^2 \simeq 0$). In photoproduction the presence of two hadronic jets, each with at least $5 \gev$ transverse energy, was required. The measurements agree in general with Monte Carlo models and are consistent with measurements made at $e^+ e^-$ colliders, except for an enhancement of baryon relative to meson production in photoproduction.
Differential K0S cross section in DIS events as a function of transverse momentum (lab). for Q**2 from 5 to 25 GeV**2.
Differential K0S cross section in DIS events as a function of transverse momentum (lab). for Q**2 > 25 GeV**2.
Differential K0S cross section in DIS events as a function of pseudorapidity (lab). for Q**2 from 5 to 25 GeV**2.
Differential K0S cross section in DIS events as a function of pseudorapidity (lab). for Q**2 > 25 GeV**2.
Differential K0S cross section in DIS events as a function of Bjorken X. for Q**2 from 5 to 25 GeV**2.
Differential K0S cross section in DIS events as a function of Bjorken X. for Q**2 > 25 GeV**2.
Differential K0S cross section in DIS events as a function of Q**2. for Q**2 > 5 GeV**2.
Differential LAMBDA/LAMBDABAR cross section in DIS events as a function of transverse momentum (lab). for Q**2 from 5 to 25 GeV**2.
Differential LAMBDA/LAMBDABAR cross section in DIS events as a function of transverse momentum (lab). for Q**2 > 25 GeV**2.
Differential LAMBDA/LAMBDABAR cross section in DIS events as a function of pseudorapidity (lab). for Q**2 from 5 to 25 GeV**2.
Differential LAMBDA/LAMBDABAR cross section in DIS events as a function of pseudorapidity (lab). for Q**2 > 25 GeV**2.
Differential LAMBDA/LAMBDABAR cross section in DIS eventsas a function of Bjorken X. for Q**2 from 5 to 25 GeV**2.
Differential LAMBDA/LAMBDABAR cross section in DIS eventsas a function of Bjorken X. for Q**2 > 25 GeV**2.
Differential LAMBDA/LAMBDABAR cross section in DIS events as a function of Q**2. for Q**2 > 5 GeV**2.
Differential K0S cross section in photoproduction events as a function of transverse momentum (lab).
Differential K0S cross section in photoproduction events as a function of pseudorapidity (lab).
Differential K0S cross section in photoproduction events as a function of XOBS(C=GAMMA).
Differential LAMBDA/LAMBDABAR cross section in photoproduction events as a function of transverse momentum (lab).
Differential LAMBDA/LAMBDABAR cross section in photoproduction events as a function of pseudorapidity (lab).
Differential LAMBDA/LAMBDABAR cross section in photoproduction events as a function of XOBS(C=GAMMA).
Asymmetry in LAMBDA/LAMBDABAR production in DIS events as a function of transverse momentum (lab). for Q**2 > 25 GeV**2.
Asymmetry in LAMBDA/LAMBDABAR production in DIS events as a function of pseudorapidity (lab). for Q**2 > 25 GeV**2.
Asymmetry in LAMBDA/LAMBDABAR production in DIS events as a function of Bjorken X. for Q**2 > 25 GeV**2.
Asymmetry in LAMBDA/LAMBDABAR production in DIS events as a function of Q**2. for Q**2 > 25 GeV**2.
Asymmetry in LAMBDA/LAMBDABAR production in photoproduction events as a function of transverse momentum (lab).
Asymmetry in LAMBDA/LAMBDABAR production in photoproduction events as a function of pseudorapidity (lab).
Asymmetry in LAMBDA/LAMBDABAR production in photoproduction events as a function of XOBS(C=GAMMA).
LAMBDA/K0S production ratio in DIS events as a function of transverse momentum (lab). for Q**2 from 5 to 25 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of transverse momentum (lab). for Q**2 > 25 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of pseudorapidity (lab). for Q**2 from 5 to 25 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of pseudorapidity (lab). for Q**2 > 25 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of Bjorken X. for Q**2 from 5 to 25 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of Bjorken X. for Q**2 > 25 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of Q**2. for Q**2 > 5 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of Q**2. for Bjorken X from 2.0E-5 to 3.0E-4.
LAMBDA/K0S production ratio in DIS events as a function of Q**2. for Bjorken X from 3.0E-4 to 6.0E-4.
LAMBDA/K0S production ratio in DIS events as a function of Q**2. for Bjorken X from 6.0E-4 to 1.4E-3.
LAMBDA/K0S production ratio in DIS events as a function of Q**2. for Bjorken X from 1.4E-3 to 2.0E-2.
LAMBDA/K0S production ratio in DIS events as a function of Bjorken X. for Q**2 from 5.0 to 9.5 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of Bjorken X. for Q**2 from 9.5 to 25.0 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of Bjorken X. for Q**2 from 25 to 100 GeV**2.
LAMBDA/K0S production ratio in DIS events as a function of Bjorken X. for Q**2 from 100 to 500 GeV**2.
LAMBDA/K0S production ratio in photoproduction events as a function of transverse momentum (lab).
LAMBDA/K0S production ratio in photoproduction events as a function of pseudorapidity (lab).
LAMBDA/K0S production ratio in photoproduction events as a function of XOBS(C=GAMMA).
LAMBDA/K0S production ratio in photoproduction events as a function of transverse momentum (lab). for data from the fireball-enriched sample where the highest energy jet contributes no more than 30% to the total energy.
LAMBDA/K0S production ratio in photoproduction events as a function of transverse momentum (lab). for data from the fireball-depleted sample where the highest energy jet contributes at least 30% to the total energy.
LAMBDA/K0S production ratio in photoproduction events as a function of pseudorapidity (lab). for data from the fireball-enriched sample where the highest energy jet contributes no more than 30% to the total energy.
LAMBDA/K0S production ratio in photoproduction events as a function of pseudorapidity (lab). for data from the fireball-depleted sample where the highest energy jet contributes at least 30% to the total energy.
LAMBDA/K0S production ratio in photoproduction events as a function of XOBS(C=GAMMA). for data from the fireball-enriched sample where the highest energy jet contributes no more than 30% to the total energy.
LAMBDA/K0S production ratio in photoproduction events as a function of XOBS(C=GAMMA). for data from the fireball-depleted sample where the highest energy jet contributes at least 30% to the total energy.
K0S/Charged particle production ratio in DIS events as a function of transverse momentum (lab). for Q**2 > 25 GeV**2.
K0S/Charged particle production ratio in DIS events as a function of pseudorapidity (lab). for Q**2 > 25 GeV**2.
K0S/Charged particle production ratio in photoproduction events as a function of transverse momentum (lab).
K0S/Charged particle production ratio in photoproduction events as a function of pseudorapidity (lab).
K0S/Charged particle production ratio in photoproduction events as a function of transverse momentum (lab). for data from the fireball-enriched sample where the highest energy jet contributes no more than 30% to the total energy.
K0S/Charged particle production ratio in photoproduction events as a function of transverse momentum (lab). for data from the fireball-depleted sample where the highest energy jet contributes at least 30% to the total energy.
K0S/Charged particle production ratio in photoproduction events as a function of pseudorapidity (lab). for data from the fireball-enriched sample where the highest energy jet contributes no more than 30% to the total energy.
K0S/Charged particle production ratio in photoproduction events as a function of pseudorapidity (lab). for data from the fireball-depleted sample where the highest energy jet contributes at least 30% to the total energy.
The total hadronic cross-section sigma_gg(W) for the interaction of real photons, gg->hadrons, is measured for gg centre-of-mass energies 10<W<110 GeV. The cross-section is extracted from a measurement of the process e+e- -> e+e-g*g* -> e+e- hardrons, using a luminosity function for the photon flux together with form factors for extrapolating to real photons (Q^2=0 GeV^2). The data were taken with the OPAL detector at LEP at e+e- centre-of-mass energies 161, 172 and 183 GeV. The cross-section sigma_gg(W) is compared with Regge factorisation and with the energy dependence observed in gp and pp interactions. The data are also compared to models which predict a faster rise of sigma_gg(W) compared to gp and pp interactions due to additional hard gg interactions not present in hadronic collisions.
No description provided.
No description provided.
In the first holographic bubble chamber experiment — the HOBC experiment — we have accumulated a total of 40000 holograms with particle interactions. We have determined the total charm pair cross section inpN collisions to be 23.3−7.7+10 μb and 3.6−1.7+2.3 μb for 360 and 200 GeV/c incident protons respectively. We have assumed a linear dependence of the cross section on the atomic number of the target. This experiment has demonstrated the feasibility of holographic recording in small bubble chambers. Assuming that the charm cross section can be described by the standard QCD factorized expression with gluon fusion and quark-antiquark annihilation, we have used our measured charm cross sections with other measurements to determine the effective charmed quark mass to be 1.8−0.35+0.25 GeV/c2. TheK factor, which describes the importance of the higher order corrections, is calculated to be 9.8−6.9+12.5 (See noted added in proof.)
No description provided.
We have measured the total inelastic cross section (σinel) and charged-particle multiplicities obtained in pp collisions at 405 GeV/c. The data are from a preliminary 12 000-picture bubble-chamber exposure. We find σinel=32.8±1.0 mb; the low moments of the multiplicity distribution for negative particles are 〈n−〉=3.50±0.07, D−=2.37±0.05, f2−=2.1±0.2, and f3−=0.1±0.9. We also present updated results at 102 GeV/c.
SUPERCEDES PRELIMINARY RESULTS IN J. W. CHAPMAN ET AL., PRL 29, 1686 (1972).
No description provided.
FIT TO ELASTIC DIFFERENTIAL CROSS SECTION FOR 0.05 < -T < 0.7 GEV**2.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.