Measurements of differential cross sections are presented for inclusive isolated-photon production in $pp$ collisions at a centre-of-mass energy of 13 TeV provided by the LHC and using 139 fb$^{-1}$ of data recorded by the ATLAS experiment. The cross sections are measured as functions of the photon transverse energy in different regions of photon pseudorapidity. The photons are required to be isolated by means of a fixed-cone method with two different cone radii. The dependence of the inclusive-photon production on the photon isolation is investigated by measuring the fiducial cross sections as functions of the isolation-cone radius and the ratios of the differential cross sections with different radii in different regions of photon pseudorapidity. The results presented in this paper constitute an improvement with respect to those published by ATLAS earlier: the measurements are provided for different isolation radii and with a more granular segmentation in photon pseudorapidity that can be exploited in improving the determination of the proton parton distribution functions. These improvements provide a more in-depth test of the theoretical predictions. Next-to-leading-order QCD predictions from JETPHOX and SHERPA and next-to-next-to-leading-order QCD predictions from NNLOJET are compared to the measurements, using several parameterisations of the proton parton distribution functions. The measured cross sections are well described by the fixed-order QCD predictions within the experimental and theoretical uncertainties in most of the investigated phase-space region.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $|\eta^{\gamma}|<0.6$ and photon isolation cone radius $R=0.4$.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.6<|\eta^{\gamma}|<0.8$ and photon isolation cone radius $R=0.4$.
Measured cross sections for inclusive isolated-photon production as a function of $E_{\rm T}^{\gamma}$ for $0.8<|\eta^{\gamma}|<1.37$ and photon isolation cone radius $R=0.4$.
Cross-sections for the production of a $Z$ boson in association with two photons are measured in proton$-$proton collisions at a centre-of-mass energy of 13 TeV. The data used correspond to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment during Run 2 of the LHC. The measurements use the electron and muon decay channels of the $Z$ boson, and a fiducial phase-space region where the photons are not radiated from the leptons. The integrated $Z(\rightarrow\ell\ell)\gamma\gamma$ cross-section is measured with a precision of 12% and differential cross-sections are measured as a function of six kinematic variables of the $Z\gamma\gamma$ system. The data are compared with predictions from MC event generators which are accurate to up to next-to-leading order in QCD. The cross-section measurements are used to set limits on the coupling strengths of dimension-8 operators in the framework of an effective field theory.
Measured fiducial-level integrated cross-section. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the leading photon transverse energy $E^{\gamma1}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
Measured unfolded differential cross-section as a function of the subleading photon transverse energy $E^{\gamma2}_{\mathrm{T}}$. NLO predictions from Sherpa 2.2.10 and MadGraph5_aMC@NLO 2.7.3 are also shown. The uncertainty in the predictions is divided into statistical and theoretical uncertainties (scale and PDF+$\alpha_{s}$).
A measurement of the cross section for the inclusive production of isolated prompt photons in pp collisions at a centre-of-mass energy sqrt(s) = 7TeV is presented. The measurement covers the pseudorapidity ranges |eta|<1.37 and 1.52<|eta|<1.81 in the transverse energy range 15 < E_T <100 GeV. The results are based on an integrated luminosity of 880 nb-1, collected with the ATLAS detector at the Large Hadron Collider. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range < 0.6.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 0.6 to 1.37.
The measured prompt photon cross section as a function of transverse energy for the |pseudorapidity| range 1.52 to 1.81.
The results of two sets of transverse energy measurements, performed with incident proton beams of 200 and 450 GeV/c momentum on several nuclear targets, are presented. The transverse energy cross sections dσ/dET are measured in a pseudorapidity range including the target fragmentation region (−0.1<η<2.9) for both data sets and also in a nearly complete pseudorapidity coverage (−0.1<η<5.5) for the data taken at 200 GeV/c incident momentum. A comparison is made of the transverse energy distributions in the target fragmentation region and in the full η region. We find that the mean value of pseudorapidity of the dET/dη distributions shifts towards the target fragmentation region as the atomic mass number of the target increases or a selection of high transverse energy events is made. A parametrization based on a simple geometrical nucleonnucleon scattering approach was found to be inadequate to describe all features of the transverse energy distributions. Finally, the VENUS model is compared with the experimental data.
No description provided.
No description provided.
No description provided.
The transverse energy distributions have been measured for interactions of 32 S nuclei with Al, Ag, W, Pt, Pb, and U targets, at an incident energy of 200 GeV per nucleon in the pseudorapidity region −0.1 < ν lab < 5.5. These distributions are compared with those for 16 OW interactions in the same pseudorapidity region and with earlier measurements performed with 16 O and 32 S projectiles in the region −0.1 < ν lab < 2.9. These comparisons provide both a better understanding of the dynamics involved and improved estimates of stopping power and energy density.
No description provided.
No description provided.
No description provided.
Transverse-energy distributions have been measured for the collisions of the 32 S nucleus with Al, Ag, W, Pt, Pb, and U target nuclei, at an incident energy of 200 GeV per nucleon. The shapes of these distribution reflect the geometry of the collisions, including the deformation effects. For central collisions, the transverse-energy production in the region −0.1< η lab <2.9 increases approximately as A 0.5 , where A is the atomic mass number of the target. This increase is accompanied by a relative depletion in the forward region η lab > 2.9. These results are compared with those obtained under similar conditions with incident 16 O nuclei. A comparison is also made with the predictions of a Monte Carlo generator based on the dual parton model. Finally, we give estimates of the energy density reached and its dependence on the atomic mass number of the projectile.
No description provided.
No description provided.
No description provided.
The transverse energy cross-sectiondσ/dET has been measured in the pseudorapidity region 0.6<η<2.4 for hadron-lead collisions at 200 GeV/c incident hadron momentum. TheET distribution extends to 40 GeV, which is twice the kinematic limit forp-p collisions at the same incident beam momentum. The distribution ofET is found to shift towards low pseudorapidities with increasing total transverse energy.
Statistical error only.
None
No description provided.
No description provided.
No description provided.
We present stdies of events triggered on two high-pT jets, produced inpp collisions at the CERN Intersecting Storage Rings (ISR) at\(\sqrt s \)=63 GeV, using a large solid angle calorimeter. The cross-section for producing two jets is measured in the dijet mass range 17–50 GeV/c2. A high-statistics sample of dijet events, where each jet has transverse energy above 10 GeV, is used to study the structure of jets and the associated event. We find the longitudinal fragmentation function to be similar to that of jets emerging frome+e− collisions but considerably harder than that observed at the Super Proton Synchrotron (SPS)\(p\bar p\) Collider. A steepening of the fragmentation function is observed when increasing the jet energy. Studies of the charge distribution in jets show that these predominantly originate from fragmenting valence quarks. The transverse energy and particle flows are presented as functions of the azimuthal distance from the jet axis.
No description provided.
No description provided.
FRAGMENTATION FUNCTION FOR ET(JET) > 10 GEV.
A comparison between p p and pp interactions at √ s = 52.7 GeV is presented for a total neutral transverse energy ( E T o ) trigger and for a high transverse momentum ( p T ) neutral cluster trigger. The rate of production of events in the range 6< E T o <20 GeV is observed to be 10% higher in p p collisions than in pp collisions. A study of the structure of the events shows this excess to be due to more isotropic events being produced in p p collisions. The ratio of the production cross section for single neutral clusters in p p and pp interactions in the range 1.25< p T <10 GeV/ c does not significantly differ from unity.
No description provided.