Measurement of $J/\psi$ production cross-sections in $pp$ collisions at $\sqrt{s}=5$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Beteta, C. Abellán ; et al.
JHEP 11 (2021) 181, 2021.
Inspire Record 1915030 DOI 10.17182/hepdata.115512

The production cross-sections of $J/\psi$ mesons in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=5$ TeV are measured using a data sample corresponding to an integrated luminosity of $9.13\pm0.18~\text{pb}^{-1}$, collected by the LHCb experiment. The cross-sections are measured differentially as a function of transverse momentum, $p_{\text{T}}$, and rapidity, $y$, and separately for $J/\psi$ mesons produced promptly and from beauty hadron decays (nonprompt). With the assumption of unpolarised $J/\psi$ mesons, the production cross-sections integrated over the kinematic range $0<p_{\text{T}}<20~\text{GeV}/c$ and $2.0<y<4.5$ are $8.154\pm0.010\pm0.283~\mu\text{b}$ for prompt $J/\psi$ mesons and $0.820\pm0.003\pm0.034~\mu\text{b}$ for nonprompt $J/\psi$ mesons, where the first uncertainties are statistical and the second systematic. These cross-sections are compared with those at $\sqrt{s}=8$ TeV and $13$ TeV, and are used to update the measurement of the nuclear modification factor in proton-lead collisions for $J/\psi$ mesons at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\text{NN}}}=5$ TeV. The results are compared with theoretical predictions.

20 data tables

Double-differential production cross-sections for prompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Double-differential production cross-sections for nonprompt $J/\psi$ mesons in ($p_\text{T},y$) intervals. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, the third are uncorrelated systematic uncertainties, and the last are correlated between $p_\text{T}$ intervals and uncorrelated between $y$ intervals.

Single-differential production cross-sections for prompt $J/\psi$ mesons as a function of $p_\text{T}$. The first uncertainties are statistical, the second are correlated systematic uncertainties shared between intervals, and the last are uncorrelated systematic uncertainties.

More…

Dependence of the $t\bar{t}$ production cross section on the transverse momentum of the top quark

The D0 collaboration Abazov, V.M. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 693 (2010) 515-521, 2010.
Inspire Record 842641 DOI 10.17182/hepdata.54975

We present a measurement of the differential cross section for $t\bar{t}$ events produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV as a function of the transverse momentum ($p_T$) of the top quark. The selected events contain a high-$p_T$ lepton ($\ell$), four or more jets, and a large imbalance in $p_T$, and correspond to 1 fb${}^{-1}$ of integrated luminosity recorded with the D0 detector. Each event must have at least one candidate for a $b$ jet. Objects in the event are associated through a constrained kinematic fit to the $t\bar{t}\to WbW\bar{b} \to \ell\nu b q\bar{q}'\bar{b}$ process. Results from next-to-leading-order perturbative QCD calculations agree with the measured differential cross section. Comparisons are also provided to predictions from Monte Carlo event generators using QCD calculations at different levels of precision.

2 data tables

Total cross section for TOP TOPBAR production integrating over PT.

The inclusive PT spectra for TOP TOPBAR production.


J / psi production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 370 (1996) 239-248, 1996.
Inspire Record 415417 DOI 10.17182/hepdata.42319

We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.

5 data tables

No description provided.

No description provided.

Integrated b-quark production cross section.

More…

Inclusive muon and B quark production cross-sections in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
(1995), 1995.
Inspire Record 398709 DOI 10.17182/hepdata.43027

We have calculated the double and triple differential cross sections for electron ejection with energy of 14.6 eV in single ionization of H2 by 75 keV proton impact. A molecular version of the continuum distorted wave-eikonal initial state approach is applied, where the interaction between the projectile and the residual molecular ion is considered more properly than in previous applications of the method. For triple differential cross sections, the present results are in better agreement with the experimental data than those of other descriptions when large momentum transfer values are considered. For double differential cross sections the experimental data are reproduced quite well for both coherent and incoherent proton beams.

2 data tables

No description provided.

No description provided.