Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q^2<0.01 GeV^2) and deep-inelastic scattering processes (DIS, 4<Q^2<80 GeV^2). The event topology is given by ep-> e X Y, in which the system X, containing at least two jets, is separated from a leading low-mass proton remnant system Y by a large rapidity gap. The dijet cross sections are compared with NLO QCD predictions based on diffractive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS cross sections by H1. In DIS, the dijet data are well described, supporting the validity of QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon density at high fractional parton momentum than the measurements of inclusive diffractive DIS. In photoproduction, the predicted dijet cross section has to be multiplied by a factor of approximately 0.5 for both direct and resolved photon interactions to describe the measurements. The ratio of measured dijet cross section to NLO prediction in photoproduction is a factor 0.5+-0.1 smaller than the same ratio in DIS. This suppression is the first clear observation of QCD hard scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.
Differential cross section for DIS events as a function of Z_Pomeron.
Differential cross section for DIS events as a function of LOG10(X_Pomeron).
Differential cross section for DIS events as a function of W.
Results on exclusive double diffraction dissociation in (N π ) and (N ππ ) final states are reported for neutron-neutron interactions at √ s = 26.4 GeV and for the proton-neutron interactions at √ s = 37.2 GeV. The data have been obtained at the CERN intersecting storage rings using split field magnet detector with proton-deuteron and deuteron-deuteron colliding beams. Factorization is shown to be verified to a very high degree in both mass- and t -differential cross-sections. The data confirm the previously observed rise in the proton-proton double diffractive cross-section as a function of c.m. energy.
26.6 GEV/C INCIDENT BEAMS.
26.6 GEV/C INCIDENT BEAMS.
No description provided.
None
No description provided.
No description provided.
The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.
A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \leq Q^2 \leq 1600 \rm GeV^2$, triple differentially in $\xpom$, $Q^2$ and $\beta = x / \xpom$, where $x$ is the Bjorken scaling variable. At low $\xpom$, the data are consistent with a factorisable $\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\alphapom(0)= 1.118 \pm 0.008 {\rm (exp.)} ^{+0.029}_{-0.010} {\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\beta$ dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the $Q^2$ range studied. Total and differential cross sections are also measured for the diffractive charged current process $e^+ p \to \bar{\nu}_e XY$ and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current $ep$ cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on $Q^2$ at fixed $\xpom$ and $x$ or on $x$ at fixed $Q^2$ and $\beta$.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the Minimum Bias data sample taken in 1997.
Reduced cross section from the complete ('all') data sample taken in 1997.
The analyzing power for elastic pd scattering at 3.5 GeV has been measured in the region 0.1⩽−t⩽1.5 (GeV/ c ) 2 , using the polarized proton beam at KEK. The angular distribution shows a behavior similar to that in the lower energy region. It is reproduced fairly well by the predictions of a multiple scattering model based on the Glauber theory.
No description provided.
An experiment resulting in the first measurement of the isospin-mixing, charge-symmetry-violating component of the n−p interaction has been performed. The experiment determined the difference in the angles of the zero crossing of the neutron and proton analyzing powers An and Ap at 477 MeV. In terms of the laboratory scattering angle of the neutron, the measured difference is θ0n(An)−θ0n(Ap)=+0.13° ±0.06° (±0.03°), where the second error is a worst-case estimate of systematic error. The resulting difference in the analyzing powers at the zero-crossing angle is An−Ap=+0.0037 ±0.0017 (±0.0008).
No description provided.
The effect of isospin-violating, charge-symmetry-breaking (CSB) terms in the np interaction has been observed at TRIUMF by measuring the difference in the zero-crossing angles of the neutron and proton analyzing powers, An and Ap, at a neutron energy of 477 MeV. The scattering asymmetries were measured with a neutron beam incident on a polarizable proton target. To reduce systematic errors, interleaved measurements of An and Ap were made using the same beam and target (apart from their respective polarization states). Neutrons and protons were detected in coincidence in the center-of-mass angle range from 59°–80°. The difference in zero-crossing angles was 0.340°±0.162° (±0.058°), which yields ΔA≡An-Ap=0.0047±0.0022 (±0.0008) using dA/dθc.m.=−0.01382 deg−1. The second errors represent systematic effects. This result is in good agreement with recent theoretical calculations which include CSB effects due to the np mass difference in π, ρ, and 2π exchange, electromagnetic coupling of the neutron anomalous magnetic moment to the proton current, ρ-ω-meson mixing, and short- and medium-range effects of the up- and down-quark mass difference.
No description provided.
This paper reports studies of the reactions γp→ρ π π πp and γp→ρ ρ πp. In particular a peak is reported in the ρ ρ π mass spectrum with closely similar mass and width to those of the ω ρ π peak previously reported in the reaction γp→ω ρ πp. The ratio of production cross sections is found to be ρ ρ π/ω ρ π=0.96±0.19, in serious disagreement with the expectation from Vector Meson Dominance. A possible explanation is indicated.
No description provided.
About 15 000 K − Φp events have been collected in the CERN Ω′ spectrometer. A partial-wave decomposition of the K − Φ system is performed. The 1 + SO + wave is dominant. The 0 − P0 + and 2 − P0 + waves are important and show resonant behaviour at ∼ 1.83 GeV (Γ ∼ 0.25 GeV) and ∼ 1.73 GeV (Γ ∼ 0.22 GeV) respectively. The first one can be interpreted as the second radial excitation of the kaon while the second one can be identified as one of the two L mesons.
No description provided.