As part of a program to determine proton-proton elastic-scattering amplitudes, we have measured the spin-spin correlation parameter CNN at 6 GeV/c. Measurements were made over the |t| range of 0.08 to 1.4 (GeV/c)2 using a polarized beam and a polarized target at the Argonne National Laboratory Zero Gradient Synchrotron.
No description provided.
In an exposure of the Argonne National Laboratory 12-foot hydrogen bubble chamber to a beam of 12.4-GeV/c protons, we have measured the total and differential cross sections for the inclusive reactions p+p→γ+X, π0+X, K0+X, and Λ+X, as well as estimates for the inclusive η and Σ0 cross sections. We present the average number of π0, K0, and Λ as a function of the associated charge multiplicity. We observe that the average charge multiplicity in pp collisions is the same whether or not a π0, K0, or Λ is also produced in the interaction. Invariant cross sections are presented as a function of PT2 and x, the Feynman scaling variable. The π0 differential cross sections are consistent with the relation dσdP(π0)=12[dσdP(π+)+dσdP(π−)] for all pion momenta P. The differential cross section for Λ production indicates a break in the distribution of |t−tmin|=1.4 (GeV/c)2. The polarization of the Λ's is found to be consistent with zero for all values of x.
No description provided.
From a 150 000-photograph exposure, we analyzed the p¯d→p¯psn reaction, ps denoting a proton stopping in the deuterium-filled bubble chamber. Choosing kinematical regions in which the ps can be recognized as a spectator, we studied the p¯n→p¯n process. From the observed p¯n diffraction peak, we obtained an exponential slope for the four-momentum-transfer distribution of bn=9.4±0.8 (GeV/c)−2, the elastic p¯n cross section being estimated as σe(p¯n)=16.5±2.4 mb. The present values in conjunction with those obtained at ≈1.8 and 3.5 GeV/c show that in this region bn and σe(p¯n) decrease with increasing incident momentum. We compared our data with the reactions np→np at ≈5.4 GeV/c and p¯p→p¯p at 5.7 GeV/c. The p¯n→p¯n and np→np differential cross sections exhibit a crossover phenomenon while p¯p and p¯n elastic scattering show an isospin dependence. We also analyzed the p¯d→p¯psn reaction by means of the Glauber formalism.
No description provided.
No description provided.
In a 35 000-picture exposure of the Fermilab 30-in. hydrogen bubble chamber to a 300-GeV/c proton beam 1863 neutral V0's were measured. The inclusive cross sections for γ, Ks0, Λ0Σ0, and Λ¯0Σ¯0 are 257 ± 18 mb, 7.3 ± 0.6 mb, 3.6 ± 0.4 mb, and 1.0 ± 0.3 mb, respectively. The correlation with charged particles and other inclusive features are studied.
No description provided.
The inclusive ϱ ° production cross section has been measured in the reaction π − p → π + π − X at 205 GeV/ c . We find σ ( ϱ ° ) = 13.5 ± 3.4 mb, with most of the production occuring in the central region. Assuming σ ( ϱ + ) ≈ σ ( ϱ − ) ≈ σ ( ϱ ° ), it is concluded that approximately one-third of the pions at this energy come from ϱ -decay.
No description provided.
No description provided.
No description provided.
The experimental upper limit for the diffractive photoproduction of the ψ(3105) is 29 nb, with 90% confidence, at an average photon energy of 18.2 GeV.
No description provided.
The reactions e+e−→e+e− and e+e−→μ+μ− have been measured at center-of-mass energies 3.0, 3.8, and 4.8 GeV and production angles of 50°<θ<130° over all azimuthal angles. Agreement with quantum electrodynamics is excellent. New limits for cutoff parameters in quantum-electrodynamic-breakdown models are given.
No description provided.
No description provided.
We have observed a very sharp peak in the cross section for e+e−→hadrons, e+e−, and possibly μ+μ− at a center-of-mass energy of 3.105±0.003 GeV. The upper limit to the full width at half-maximum is 1.3 MeV.
No description provided.
We report on the results at ADONE to study the properties of the newly found 3.1-BeV particle.
No description provided.
We have measured small angle elastic pion-proton scattering in 40 and 50 GeV c π − beams at Serpukhov. Analysis of the data in the Coulomb interference region yields a value for the ratio of the real to the imaginary part of the strong amplitude, ϱ (0)=−0.074 ± 0.033 at 40 GeV/ c and ϱ (0)=−0.006 ±0.026 at 50 GeV/ c
STATISTICAL ERRORS ONLY.
STATISTICAL ERRORS ONLY.