We report on the first measurement of the spin-dependent structure function g 1 d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006< x <0.6, 1 GeV 2 < Q 2 <30 GeV 2 . The first moment, Γ 1 d =ʃ 0 1 g 1 d d x=0.023±0.020 ( stat. ) ± 0.015 ( syst. ) , is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g 1 p , we infer the first moment of the spin-dependent neutron structure function g 1 n . The difference Γ 1 p − Γ 1 n =0.20±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ 1 p − Γ 1 n =0.191±0.002.
Virtual photon asymmetry A1.
Spin-dependent structure function G1.
The search for an additional heavy gauge boson Z′ is described. The models considered are based on either a superstring-motivated E 6 or on a left-right symmetry and assume a minimal Higgs sector. Cross sections and asymmetries measured with the L3 detector in the vicinity of the Z resonance during the 1990 and 1991 running periods are used to determine limits on the Z-Z′ gauge boson mixing angle and on the Z′ mass. For Z′ masses above the direct limits, we obtain the following allowed ranges of the mixing angle, θ M at the 95% confidence level: −0.004 ⪕ θ M ⪕ 0.015 for the χ model, −0.003 ⪕ θ M ⪕ 0.020 for the ψ model, −0.029 ⪕ θ M ⪕ 0.010 for the η model, −0.002 ⪕ θ M ⪕ 0.020 for the LR model,
Data taken during 1990.
Data taken during 1991.
Data taken during 1990.
The hadronic lineshape of the Z has been analyzed for evidence of signals of new, narrow vector resonances in the Z-mass range. The production rate of such resonances would be enhanced due to mixing with the Z. No evidence for new states is found, and it is thus possible to exclude, at the 95% confidence level, a quarkonium state in the mass range from 87.7 to 94.7 GeV.
Statistical errors only.
Using data from the TPC/Two-Gamma experiment at the SLAC e+e− storage ring PEP, a C=+1 resonance has been observed in the π+π−π0γ final state resulting from the fusion of one nearly real and one quite virtual photon. The actual decay channel is probably π+π−π0π0, where one final-state photon is not detected, and the mass of the fully reconstructed state would be approximately 1525 MeV. A four-pion decay mode in turn implies that the resonance has even isospin. The nonobservation of this R(1525) when both initial-state photons are nearly real suggests a spin-1 assignment. Since the large measured value of the product of the branching ratio into π+π−π0π0 and the γγ coupling makes it unlikely that this state is the mostly s¯s f1(1510), its interpretation may lie outside of conventional meson spectroscopy. There is a second, less-significant enhancement observed in the same reaction at a four-pion mass centered around 2020 MeV.
No description provided.
Coupling parameter times the effective form factor.
The first prompt photon measurement from the CDF experiment at the Fermilab pp¯ Collider is presented. Two independent methods are used to measure the cross section: one for high transverse momentum (PT) and one for lower PT. Comparisons to various theoretical calculations are shown. The cross section agrees qualitatively with QCD calculations but has a steeper slope at low PT.
Cross section using profile method and an isolation cut of 2 GeV in a cone around the photon. There is an additional 27 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using conversion method and an isolation cut of 2 GeV in a cone around the photon. There is an additional +32,-46 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Cross section using profile method and an isolation cut of 15 pct of the photon PT in a cone around the photon. There is an additional 29 pct systematic uncertainty in addition to the PT dependent systematic errors shown in the table.
Final results of the measurement of the analysing power A On of the p p → n n reaction are presented. Eight measurements in the range 546–1287 MeV/ c incoming p momentum have been performed over the full angular range using a solid polarized proton target and the Low Energy Antiproton Ring (LEAR) at CERN antiproton extracted beams.
No description provided.
No description provided.
No description provided.
The degree of excitation of the emulsion target nuclei due to nuclear interactions of oxygen and sulfur projectiles at 200 GeV/nucleon incident energy has been investigated. Using the plausible assumption that the numberNb of slow particles emitted from the struck target nucleus can be interpreted as a measure of the temperatureT of the residual nucleus, we have found that there exists a critical temperatureTc of the excited target nucleus. For Ag and Br target nuclei this temperature corresponds to <Nb>≌12 and it is attained when the impact parameters are less than about 4 fm.
No description provided.
No description provided.
Based on 520 000 fermion pairs accumulated during the first three years of data collection by the ALEPH detector at LEP, updated values of the resonance parameters of theZ are determined to beMZ=(91.187±0.009) GeV, ΓZ=(2.501±0.012) GeV, σhad0=(41.60±0.27) nb, andRℓ=20.78±0.13. The corresponding number of light neutrino species isNν=2.97±0.05. The forward-backward asymmetry in lepton-pair decays is used to determine the ratio of vector to axial-vector couplings of leptons:gV2(MZ2)/gA2(MZ2)=0.0052±0.0016. Combining this with ALEPH measurements of theb andc quark asymmetries and τ polarization gives sin2θWeff=0.2326±0.0013. Assuming the minimal Standard Model, and including measurements ofMW/MZ fromp\(\bar p\) colliders and neutrino-nucleon scattering, the mass of the top quark is\(M_{top} = 156 \pm \begin{array}{*{20}c} {22} \\ {25} \\ \end{array} \pm \begin{array}{*{20}c} {17} \\ {22Higgs} \\ \end{array} \) GeV.
Data from 1990 running period.
Data from 1990 running period.
Data from 1990 running period.
A new measurement of αs is obtained from the distributions in thrust, heavy jet mass, energy-energy correlation and two recently introduced jet broadening variables following a method proposed by Cata
Thrust distribution corrected for detector acceptance and initial state photon radiation.
Heavy jet mass (RHO) distribution (THRUST definition) corrected for detect or acceptance and initial state photon radiation.
Heavy jet mass (RHOM) distribution (MASS definition) corrected for detectoracceptance and initial state photon radiation.
Data taken with the Collider Detector at Fermilab (CDF) during the 1988–1989 run of the Tevatron are used to measure the distribution of the center-of-mass (rest frame of the initial state partons) angle between isolated prompt photons and the beam direction. The shape of the angular distribution for photon-jet events is found to be significantly different from that observed in dijet data. The QCD predictions show qualitative agreement with the observed prompt photon angular distribution.
Background subtracted normalised prompt photon angular distribution.