Results are reported based on a study of π − p interactions at 147 GeV/ c in the FERMILAB 30-inch Proportional Wire Hybrid Bubble Chamber System. We have measured the topological cross sections and separated two-prong elastic and inelastic channels. In addition, we have extracted leading particle cross sections using the increased momentum resolution of the downstream proportional wire chambers. We have compared our results with experiments and predictions of a simple fragmentation hyphothesis.
No description provided.
Channel cross sections have been determined for p p annihilations into final states containing 3 to 9 pions at 4.6 GeV/ c . The moments of both the charged and neutral pion multiplicity distributions are presented and model predictions are critically examined.
No description provided.
The reaction γ d→d ππ , γ p→p ππ and γ n→n ππ were studied in the SLAC 82″ deuterium filled bubble chamber, exposed to a linearly polarized photon beam of 7.5 GeV. All three reactions are dominated by ϱ 0 production. The differential cross section has a slope of ∼6.5 GeV −2 for nucleon reactions and a slope of ∼27 GeV −2 for coherent deuteron reactions. The behaviour of the density matrix elements shows that ϱ production conserves s -channel c.m.s. helicity and is dominated by natural parity exchange.
No description provided.
Total and partial γd, γp and γn reactions were studied in the SLAC 82 inch deuterium-filled bubble chamber, which was exposed to a linearly polarized photon beam at an energy of 7.5 GeV. We report total, topological and channel cross sections for these reactions. The γn average charge multiplicity was found to be one unit of charge less than the γp average charge multiplicity. The isoscolar-isovector interference term as calculated by comparing the γp charge symmetric reactions is found to be small.
No description provided.
CHARGE MULTIPLICITY TOPOLOGICAL CROSS SECTIONS.
No description provided.
The polarization parameter in π − p elastic scattering has been measured in the backward angular region at an incident momentum of 6 GeV/ c . The measurements cover the range of four momentum transfer u = 0 to −1 (GeV/ c ) 2 , and were obtained with a high intensity pion beam, a butanol polarized proton target, and arrays of scintillation counter hodoscopes. The polarization is different from zero, in contradiction to the prediction of the naive one trajectory Regge-exchange model. It increases positively with the four-momentum transfer u, reaching a maximum of about 0.4 at u ≈ −0.3 (GeV/c)2. It then decreases and becomes slightly negative beyond u ≈ −0.5 (GeV/c)2. A variety of baryon exchange models are briefly reviewed and none are found to be in complete agreement with all the experimental data.
No description provided.
A study has been made of the individual channels that contribute to the reaction K − p → Λ 0 + neutrals in the K − momentum range from 525 to 820 MeV/ c . Total cross sections are presented for the K − p → Λ 0 η 0 , Σ 0 Σ 0 π 0 , Λ 0 π 0 , Σ 0 π 0 and Σ 0 π 0 π 0 channels and differential cross sections for K − p → Λ 0 π 0 . The data were obtained in a heavy liquid bubble chamber experiment with an average gamma detection efficiency of 70%. Only events with all decay gammas detected were used for analysis. This is the first of a series of papers on this subject and presents the experimental technique in detail.
No description provided.
Data are presented at 13 momenta between 0.64 and 1.51 GeV/ c for the coherent processes K + d → K + d, K + d→ K 0 d π + and K + d → K + d π + π − . Distributions for K + d elastic scattering are given in the (0.03<| t |<0.22) (GeV/ c ) 2 range.
No description provided.
No description provided.
No description provided.
In this note we report the results obtained in a single-photoproduction experiment on neutrons in deuterium, with an experimental apparatus made of scintillation counters, spark chambers and a magnetic spectrometer; the explored energy region is one around the second resonance, that is (500÷900) MeV indicent γ-ray energy. We briefly describe the present situation of the phenomenological analysis of the single photoproduction in the second resonance region and compare the results of an analysis made by us with the results obtained by other authors; in particular the e.m. coupling of theP11 isobaric state found by us is large, in accordance with the results of some other authors.
No description provided.
None
No description provided.
No description provided.
No description provided.
From an exposure of the Argonne National Laboratory 12-foot bubble chamber to a beam of 12.4-GeV/c protons we have obtained a 3649-event sample of the reaction pp→γ+anything, where we observe photon conversions into e+e− pairs in the liquid hydrogen. We find that the invariant cross section for this reaction does not separate in its x and P⊥ dependence at our energy. By setting upper bounds on the cross sections for inclusive η and Σ0 production, we show that π0 decay is the dominant source of photons and therefore measure the cross section for inclusive π0 production to be σ(π0)=(31.5±2.6) mb. Comparison with the inclusive π+ and π− cross sections at 12.0 GeV/c shows that the relation 2σ(π0)=σ(π+)+σ(π−) is well satisfied. We confirm earlier indications that the average number of π0's per inelastic pp interaction is approximately independent of the number of associated charged particles produced.
Axis error includes +- 8/8 contribution (THE CROSS SECTION FOR NON-PI0 GAMMA PRODUCTION IS LESS THAN 2.3 MB AND HAS BEEN NEGLECTED IN OBTAINING THE 31.5+-2.6 MB CROSS SECTION FOR THE INCLUSIVE PI0 PRODUCTION).