Using 13.5-GeV beams at Stanford Linear Accelerator Center, we have compared electron and positron inelastic scattering over the range 1.2<|q2|<3.3 (GeV/c)2, 2<ν<9.5 GeV for the four-momentum and energy transfers, respectively. We find the ratio of the cross sections to be e+e−=1.0027±0.0035 (including statistical and systematic effects), with no significant dependence on q2 or ν. This result has appreciably smaller errors than previous attempts to find two-photon-exchange effects in electron or muon scattering.
Inclusive cross sections and one-particle inclusive spectra are given for neutral K, Λ and Λ produced in K − p and K + p interactions at 32 GeV/ c in the 4.5 m Mirabelle hydrogen bubble chamber at the Serpukhov accelerator. Cross sections for associated production are also given, and the energy dependences of the cross sections and of the x distributions in the central and in the fragmentation regions are discussed.
Inclusive cross sections and longitudinal momentum distributions are presented for γ rays produced in K − p and K + p interactions at 32 GeV/c in the 4.5 m Mirabelle hydrogen bubble chamber at the Serpukhov accelerator. The average longitudinal and transverse momentum of neutral pions and the average π 0 multiplicity ▪ 〈 n π 0〉 are estimated. It is found that 〈 n π 0〉 is an increasing function of the number of charged prongs.
In a sample of 108 563 pictures taken with the Fermilab 30-inch hydrogen bubble chamber, exposed to a 360-GeV/c π− beam, we have observed 19 453 interactions in a selected fiducial region. The observed charged multiplicity distribution has been corrected for the effects of scan efficiency, errors in prong count, missed close-in vees, secondary interactions, and neutron stars and for Dalitz pairs. The two-prong events have been corrected for losses at low −t. The total cross section is measured to be 25.25 ± 0.35 mb, and the elastic cross section is 3.61 ± 0.11 mb with an exponential slope of (8.82 ± 0.30) (GeV/c)−2. The average charged-particle multiplicity for inelastic events is 8.73 ± 0.04, and the second moment f2 is measured to be 9.83 ± 0.23.
We have investigated the ρ-meson production mechanism in the three reactions π±p→ρ±p and π−p→ρ0n at 3.9 GeV/c (s=8.2 GeV2) using the prism-plot technique. Differential cross sections at all momentum transfers are presented. A significant backward peak has been found in all three reactions. The differential cross sections for these backward peaks are given and are compared with the equivalent pion elastic and charge-exchange cross sections in the backward direction. Using a linear combination of the three differential cross sections we have isolated the I=0 exchange contribution in the forward direction. This differential cross section has a zero at −t=0.45 (GeV/c)2 and is fitted by the dual absorptive model of Harari with an interaction radius of ∼ 1.2 F. The total I=0 cross section is calculated and compared with similarly determined cross sections at higher momenta. An analysis of the properties of the other possible spin-parity exchanges is also presented.
We report on measurements of inclusive π 0 production at c.m. energies of 53 and 63 GeV, θ ≅90°, from p-p collisions at the CERN ISR. In the range 0.2< x t <0.45 the data can be described by a form: Ed 3 σ d p 3 ∝p − (6.6±0.8) t (1−x t ) (9.6±1.0) .
Antiproton-proton annihilations into final states containing one or two K10-mesons are studied on the basis of 450 000 pictures from the CERN 2 m HBC. The experiment covers the domain of antiproton incident momentum from 1.50 to 2.04 GeV/c. The resonance production rates are computed for the most abundant channels. The K10K10 threshold effect is explained through the inelastic channel π+π− → K10K10. The decay modes D, E → δ±(975)π∓, δ±(975) → K10K± are pointed out. The strange mesons C and C′ are observed in these annihilations and come mainly from the two-body channels \(p\bar p\) → (C, C′)K and\(p\bar p\) → (C, C′)K*.
We present results for the differential cross sections of neutrinos and antineutrinos on nucleons in the energy range E = 2−200 GeV, from the BEBC and Gargamelle experiments. The structure functions F 2 , 2 χF 1 and χF 3 have been evaluated as a function of χ and q 2 . Deviations are observed from Bjorken scaling, which are very similar to those found in electron and muon inelastic scattering. For the Callan-Gross ratio, we find 2χF 1 F 2 = 0.80 ± 0.12 and the corresponding value for 〈R〉 = 〈 σ S σ T 〉 = 0.15 ± 0.10 . Our results are consistent with the Gross-Llewellyn-Smith sum rule; we measure ⩾2.5 ± 0.5 valence quarks per nucleon. Quark and antiquark distributions are given. The Nachtmann moments of F 2 and χF 3 are quantitatively consistent with the predictions from QCD. The value of the strong interaction parameter is λ = 0.74 ± 0.05 GeV without corrections, and 0.66 ± 0.05 GeV including α S 2 corrections. The moments of the gluon distribution are found to be positive and indicate an χ distribution of gluons which is comparable with that of the valence quarks.
We present results from an experiment studying the production of single particles and jets (groups of particles) with high p ⊥ (transverse momentum) in 200 GeV/ c interactions on a beryllium target. We give a detailed discussion of the ambiguities in the jet definition. The jet and single-particle cross sections have a similar shape but the jet cross section is over two orders of magnitude larger. The events show evidence for the coplanar structure suggested by constituent models, and the momentum distributions of charged particles give strong support to a simple quark-quark scattering model.
None