Search for exclusive gamma gamma production in hadron-hadron collisions

The CDF collaboration Aaltonen, T. ; Abulencia, A. ; Adelman, J. ; et al.
Phys.Rev.Lett. 99 (2007) 242002, 2007.
Inspire Record 755922 DOI 10.17182/hepdata.51949

We have searched for exclusive 2-photon production in proton-antiproton collisions at sqrt{s} = 1.96 TeV, using 532/pb of integrated luminosity taken by the Run II Collider Detector at Fermilab. The event signature requires two electromagnetic showers, each with transverse energy E_T > 5 GeV and pseudorapidity |eta|<1.0, with no other particles detected in the event. Three candidate events are observed. We discuss the consistency of the three events with gamma-gamma, pi0-pi0, or eta-eta production. The probability that other processes fluctuate to 3 events or more is 1.7x10^-4. An upper limit on the cross section of p+pbar --> p+gamma-gamma+pbar is set at 410 fb with 95% confidence level.

1 data table

Upper limit on the cross section.


A study of the associated production of photons and b-quark jets in p-pbar collisions at sqrt{s} = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 81 (2010) 052006, 2010.
Inspire Record 840503 DOI 10.17182/hepdata.64152

The cross section for photon production in association with at least one jet containing a $b$-quark hadron has been measured in proton antiproton collisions at $\sqrt{s}=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 340 pb$^{-1}$ collected with the CDF II detector. Both the differential cross section as a function of photon transverse energy $E_T^{\gamma}$, $d \sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet)/$d E_T^{\gamma}$ and the total cross section $\sigma$($p \overline{p} \to \gamma + \geq 1 b$-jet/ $E_T^{\gamma}> 20$ GeV) are measured. Comparisons to a next-to-leading order prediction of the process are presented.

2 data tables

b + photon cross section as a function of photon ET.

b + photon total cross section for photon ET > 20 GeV.


Measurement of the p anti-p ---> t anti-t production cross- section and the top quark mass at s**(1/2) = 1.96-TeV in the all-hadronic decay mode

The CDF collaboration Aaltonen, T. ; Abulencia, A. ; Adelman, J. ; et al.
Phys.Rev.D 76 (2007) 072009, 2007.
Inspire Record 753979 DOI 10.17182/hepdata.42731

We report the measurements of the t anti-t production cross section and of the top quark mass using 1.02 fb^-1 of p anti-p data collected with the CDFII detector at the Fermilab Tevatron. We select events with six or more jets on which a number of kinematical requirements are imposed by means of a neural network algorithm. At least one of these jets must be identified as initiated by a b-quark candidate by the reconstruction of a secondary vertex. The cross section is measured to be sigma_{tt}=8.3+-1.0(stat.)+2.0-1.5(syst.)+-0.5(lumi.) pb, which is consistent with the standard model prediction. The top quark mass of 174.0+-2.2(stat.)+-4.8(syst.) GeV/c^2 is derived from a likelihood fit incorporating reconstructed mass distributions representative of signal and background.

1 data table

Total cross section measurement. The second DSYS error is the uncertainty on the luminosity.


Measurement of the WW+WZ Production Cross Section Using the Lepton+Jets Final State at CDF II

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.Lett. 104 (2010) 101801, 2010.
Inspire Record 837610 DOI 10.17182/hepdata.54292

We report two complementary measurements of the WW+WZ cross section in the final state consisting of an electron or muon, missing transverse energy, and jets, performed using p\bar{p} collision data at sqrt{s} = 1.96 TeV collected by the CDF II detector. The first method uses the dijet invariant mass distribution while the second more sensitive method uses matrix-element calculations. The result from the second method has a signal significance of 5.4 sigma and is the first observation of WW+WZ production using this signature. Combining the results gives sigma_{WW+WZ} = 16.0 +/- 3.3 pb, in agreement with the standard model prediction.

3 data tables

Cross section from the combined analysis.. Error is combined statistics and systematics.

Cross section from method one.

Cross section from method two.


Measurement of the $W^+W^-$ Production Cross Section and Search for Anomalous $WW\gamma$ and $WWZ$ Couplings in $p \bar p$ Collisions at $\sqrt{s} = 1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.Lett. 104 (2010) 201801, 2010.
Inspire Record 841021 DOI 10.17182/hepdata.54291

This Letter describes the current most precise measurement of the $W$ boson pair production cross section and most sensitive test of anomalous $WW\gamma$ and $WWZ$ couplings in $p \bar p$ collisions at a center-of-mass energy of 1.96 TeV. The $WW$ candidates are reconstructed from decays containing two charged leptons and two neutrinos, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector from 3.6 fb$^{-1}$ of integrated luminosity, a total of 654 candidate events are observed with an expected background contribution of $320 \pm 47$ events. The measured total cross section is $\sigma (p \bar p \to W^+ W^- + X) = 12.1 \pm 0.9 \textrm{(stat)} ^{+1.6}_{-1.4} \textrm{(syst)}$ pb, which is in good agreement with the standard model prediction. The same data sample is used to place constraints on anomalous $WW\gamma$ and $WWZ$ couplings.

1 data table

Measured cross section for inclusive W+ W- production.


Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Soft Electron b-Tagging

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 81 (2010) 092002, 2010.
Inspire Record 846167 DOI 10.17182/hepdata.56640

We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using a data sample corresponding to 1.7/fb of integrated luminosity collected with the Collider Detector at Fermilab. We reconstruct ttbar events in the lepton+jets channel. The dominant background is the production of W bosons in association with multiple jets. To suppress this background, we identify electrons from the semileptonic decay of heavy-flavor jets. We measure a production cross section of 7.8 +/- 2.4 (stat) +/- 1.6 (syst) +/- 0.5 (lumi) pb. This is the first measurement of the top pair production cross section with soft electron tags in Run II of the Tevatron.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the Top Quark Mass and ppbar -> ttbar Cross Section in the All-Hadronic Mode with the CDFII Detector

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 81 (2010) 052011, 2010.
Inspire Record 844530 DOI 10.17182/hepdata.56660

We present a measurement of the top quark mass and of the top-antitop pair production cross section using p-pbar data collected with the CDFII detector at the Tevatron Collider at the Fermi National Accelerator Laboratory and corresponding to an integrated luminosity of 2.9 fb-1. We select events with six or more jets satisfying a number of kinematical requirements imposed by means of a neural network algorithm. At least one of these jets must originate from a b quark, as identified by the reconstruction of a secondary vertex inside the jet. The mass measurement is based on a likelihood fit incorporating reconstructed mass distributions representative of signal and background, where the absolute jet energy scale (JES) is measured simultaneously with the top quark mass. The measurement yields a value of 174.8 +- 2.4(stat+JES) ^{+1.2}_{-1.0}(syst) GeV/c^2, where the uncertainty from the absolute jet energy scale is evaluated together with the statistical uncertainty. The procedure measures also the amount of signal from which we derive a cross section, sigma_{ttbar} = 7.2 +- 0.5(stat) +- 1.0 (syst) +- 0.4 (lum) pb, for the measured values of top quark mass and JES.

1 data table

Measured cross section for a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the Top Pair Production Cross Section in the Dilepton Decay Channel in $p\bar{p}$ Collisions at $\sqrt{s}$ = 1.96 TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Alvarez Gonzalez, B. ; et al.
Phys.Rev.D 82 (2010) 052002, 2010.
Inspire Record 845783 DOI 10.17182/hepdata.56641

A measurement of the $t\bar{t}$ production cross section in $p\bar{p}$ collisions at $\sqrt{s}$ = 1.96 TeV using events with two leptons, missing transverse energy, and jets is reported. The data were collected with the CDF II Detector. The result in a data sample corresponding to an integrated luminosity 2.8 $fb^{-1}$ is: $\sigma_{t\bar{t}}$ = 6.27 $\pm$ 0.73(stat) $\pm$ 0.63(syst) $\pm$ 0.39(lum) pb. for an assumed top mass of 175 GeV/$c^{2}$.

1 data table

Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.


Measurement of the cross section for W-boson production in association with jets in ppbar collisions at s**(1/2) = 1.96-TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 77 (2008) 011108, 2008.
Inspire Record 768579 DOI 10.17182/hepdata.42714

We present a measurement of the cross section for W-boson production in association with jets in pbarp collisions at sqrt(s)=1.96$ TeV. The analysis uses a data sample corresponding to an integrated luminosity of 320 pb^-1 collected with the CDF II detector. W bosons are identified in their electron decay channel and jets are reconstructed using a cone algorithm. For each W+>= n-jet sample ($n= 1 - 4$) we measure sigma(ppbar =>W+>=n$-jet)x BR(W => e nu) with respect to the transverse energy E_T of the n^th-highest E_T jet above 20 GeV, for a restricted W => e nu decay phase space. The cross sections, corrected for all detector effects, can be directly compared to particle level W+ jet(s) predictions. We present here comparisons to leading order and next-to-leading order predictions.

9 data tables

Measured ET differential cross section of the 1st jet in >= 1 JET plus W < E NU > events.

Measured ET differential cross section of the 2nd jet in >= 2 JET plus W < E NU > events.

Measured ET differential cross section of the 3rd jet in >= 3 JET plus W < E NU > events.

More…

Measurement of Particle Production and Inclusive Differential Cross Sections in $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

The CDF collaboration Aaltonen, T. ; Adelman, J. ; Akimoto, T. ; et al.
Phys.Rev.D 79 (2009) 112005, 2009.
Inspire Record 817466 DOI 10.17182/hepdata.52134

We report a set of measurements of particle production in inelastic pbar{p} collisions collected with a minimum-bias trigger at the Tevatron Collider with the CDF II experiment. The inclusive charged particle transverse momentum differential cross section is measured, with improved precision, over a range about ten times wider than in previous measurements. The former modeling of the spectrum appears to be incompatible with the high particle momenta observed. The dependence of the charged particle transverse momentum on the event particle multiplicity is analyzed to study the various components of hadron interactions. This is one of the observable variables most poorly reproduced by the available Monte Carlo generators. A first measurement of the event transverse energy sum differential cross section is also reported. A comparison with a Pythia prediction at the hadron level is performed. The inclusive charged particle differential production cross section is fairly well reproduced only in the transverse momentum range available from previous measurements. At higher momentum the agreement is poor. The transverse energy sum is poorly reproduced over the whole spectrum. The dependence of the charged particle transverse momentum on the particle multiplicity needs the introduction of more sophisticated particle production mechanisms, such as multiple parton interactions, in order to be better explained.

3 data tables

Charged particle invariant distribution as a function of PT. This data is that given in the erratum with the systematic errors read from the plot.

Dependance of the average track PT on the event multiplicity.

The differential charged particle distribution as a function of the summed ET of charged particles.