Evidence for the production of three massive vectorbosons in $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
PoS DIS2019 (2019) 135, 2019.
Inspire Record 1726499 DOI 10.17182/hepdata.89323

A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.

0 data tables match query

Version 2
Precision measurement of forward $Z$ boson production in proton-proton collisions at $\sqrt{s} = 13$ TeV

The LHCb collaboration Aaij, R. ; Abdelmotteleb, A.S.W. ; Abellán Beteta, C. ; et al.
JHEP 07 (2022) 026, 2022.
Inspire Record 1990313 DOI 10.17182/hepdata.132011

A precision measurement of the $Z$ boson production cross-section at $\sqrt{s} = 13$ TeV in the forward region is presented, using $pp$ collision data collected by the LHCb detector, corresponding to an integrated luminosity of 5.1 fb$^{-1}$. The production cross-section is measured using $Z\rightarrow\mu^+\mu^-$ events within the fiducial region defined as pseudorapidity $2.0<\eta<4.5$ and transverse momentum $p_{T}>20$ GeV/$c$ for both muons and dimuon invariant mass $60<M_{\mu\mu}<120$ GeV/$c^2$. The integrated cross-section is determined to be $\sigma (Z \rightarrow \mu^+ \mu^-)$ = 196.4 $\pm$ 0.2 $\pm$ 1.6 $\pm$ 3.9~pb, where the first uncertainty is statistical, the second is systematic, and the third is due to the luminosity determination. The measured results are in agreement with theoretical predictions within uncertainties.

1 data table match query

Systematic uncertainties in the double differential cross-sections in interval regions of $y^{Z}$ and $p_{T}^{Z}$, presented in percentage. The contributions from efficiency (Eff), background (BKG), final state radiation (FSR), closure test (Closure), and alignment and calibration (Alignment) are shown.


Version 3
Search for supersymmetry in final states with charm jets and missing transverse momentum in 13 TeV $pp$ collisions with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 09 (2018) 050, 2018.
Inspire Record 1672099 DOI 10.17182/hepdata.83011

A search for supersymmetric partners of top quarks decaying as $\tilde{t}_1\to c\tilde\chi^0_1$ and supersymmetric partners of charm quarks decaying as $\tilde{c}_1\to c\tilde\chi^0_1$, where $\tilde\chi^0_1$ is the lightest neutralino, is presented. The search uses 36.1 ${\rm fb}^{-1}$ $pp$ collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider and is performed in final states with jets identified as containing charm hadrons. Assuming a 100% branching ratio to $c\tilde\chi^0_1$, top and charm squarks with masses up to 850 GeV are excluded at 95% confidence level for a massless lightest neutralino. For $m_{\tilde{t}_1,\tilde{c}_1}-m_{\tilde\chi^0_1}

3 data tables match query

SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.

SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.

SR4 observed exclusion limit at 95% CL in the $m(\tilde t_1/\tilde c_1)$-$m(\tilde\chi^0_1)$ plane for the stop/scharm pair production scenario.


Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 13 TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
JHEP 01 (2018) 055, 2018.
Inspire Record 1624690 DOI 10.17182/hepdata.78402

A search for heavy neutral Higgs bosons and $Z^{\prime}$ bosons is performed using a data sample corresponding to an integrated luminosity of 36.1 fb$^{-1}$ from proton-proton collisions at $\sqrt{s}$ = 13 TeV recorded by the ATLAS detector at the LHC during 2015 and 2016. The heavy resonance is assumed to decay to $\tau^+\tau^-$ with at least one tau lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-2.25 TeV for Higgs bosons and 0.2-4.0 TeV for $Z^{\prime}$ bosons. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in benchmark scenarios. In the context of the hMSSM scenario, the data exclude $\tan\beta > 1.0$ for $m_A$ = 0.25 TeV and $\tan\beta > 42$ for $m_A$ = 1.5 TeV at the 95% confidence level. For the Sequential Standard Model, $Z^{\prime}_\mathrm{SSM}$ with $m_{Z^{\prime}} < 2.42$ TeV is excluded at 95% confidence level, while $Z^{\prime}_\mathrm{NU}$ with $m_{Z^{\prime}} < 2.25$ TeV is excluded for the non-universal $G(221)$ model that exhibits enhanced couplings to third-generation fermions.

1 data table match query

Two dimensional likelihood scan of the gluon-gluon fusion cross section times braching fraction, $\sigma(gg\phi)\times B(\phi\to\tau\tau)$, vs the b-associated production times branching fraction, $\sigma(bb\phi)\times B(\phi\to\tau\tau)$ for the Higgs boson mass ($m_\phi$) indicated in the table. For each mass, 10000 points are scanned. At each point $\Delta(\mathrm{NLL})$ is calculated, defined as the negative-log-likelihood (NLL) of the conditional fit with $\sigma(gg\phi)$ and $\sigma(bb\phi)$ fixed to their values at the point and with the minimum NLL value at any point subtracted. Vaules are provided for the fit to the observed data and to the expected data, which is the sum of Standard Model contributions not including the SM Higgs boson. The best-fit point and the preferred 68% and 95% boundaries are found at $2\Delta(\mathrm{NLL})$ values of 0.0, 2.30 and 5.90, respectively.


Search for doubly charged Higgs boson production in multi-lepton final states with the ATLAS detector using proton-proton collisions at $\sqrt{s}$ = 13 TeV

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Eur.Phys.J.C 78 (2018) 199, 2018.
Inspire Record 1632760 DOI 10.17182/hepdata.80462

A search for doubly charged Higgs bosons with pairs of prompt, isolated, highly energetic leptons with the same electric charge is presented. The search uses a proton-proton collision data sample at a centre-of-mass energy of 13 TeV corresponding to 36.1 $\mathrm{fb}^{-1}$ of integrated luminosity recorded in 2015 and 2016 by the ATLAS detector at the LHC. This analysis focuses on the decays $H^{\pm\pm}\rightarrow e^{\pm}e^{\pm}$, $H^{\pm\pm}\rightarrow e^{\pm}\mu^{\pm}$ and $H^{\pm\pm}\rightarrow \mu^{\pm}\mu^{\pm}$, fitting the dilepton mass spectra in several exclusive signal regions. No significant evidence of a signal is observed and corresponding limits on the production cross-section are derived at 95% confidence level. The observed lower limit on the mass of a doubly charged Higgs boson only coupling to left-handed leptons ($e$,$\mu$) varies from 770 GeV to 870 GeV (850 GeV expected) for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 100% and both the expected and observed mass limits are above 450 GeV for $B(H^{\pm\pm}\rightarrow \ell^{\pm}\ell^{\pm})$ = 10% and any combination of partial branching ratios.

1 data table match query

Observed and expected lower limit on the $H_{R}^{\pm\pm}$ boson mass for all branching ratio combinations ($B(ee)$,$B(e\mu)$,$B(\mu\mu)$) that sum to 60%.


Version 2
Measurement of the inclusive and differential $\mathrm{t\overline{t}}\gamma$ cross sections in the single-lepton channel and EFT interpretation at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 12 (2021) 180, 2021.
Inspire Record 1876579 DOI 10.17182/hepdata.102876

The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.

2 data tables match query

Fit result of the multijet template obtained with loosely isolated leptons and the electroweak background to the measured $m_{T}(W)$ distribution with isolated leptons in the $N_{jet}=2$, $N_{b jet}=0$ selection for electrons.

Fit result of the multijet template obtained with loosely isolated leptons and the electroweak background to the measured $m_{T}(W)$ distribution with isolated leptons in the $N_{jet}=2$, $N_{b jet}=0$ selection for electrons.


Searches for additional Higgs bosons and for vector leptoquarks in $\tau\tau$ final states in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 07 (2023) 073, 2023.
Inspire Record 2132368 DOI 10.17182/hepdata.128147

Three searches are presented for signatures of physics beyond the standard model (SM) in $\tau\tau$ final states in proton-proton collisions at the LHC, using a data sample collected with the CMS detector at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Upper limits at 95% confidence level (CL) are set on the products of the branching fraction for the decay into $\tau$ leptons and the cross sections for the production of a new boson $\phi$, in addition to the H(125) boson, via gluon fusion (gg$\phi$) or in association with b quarks, ranging from $\mathcal{O}$(10 pb) for a mass of 60 GeV to 0.3 fb for a mass of 3.5 TeV each. The data reveal two excesses for gg$\phi$ production with local $p$-values equivalent to about three standard deviations at $m_\phi$ = 0.1 and 1.2 TeV. In a search for $t$-channel exchange of a vector leptoquark U$_1$, 95% CL upper limits are set on the dimensionless U$_1$ leptoquark coupling to quarks and $\tau$ leptons ranging from 1 for a mass of 1 TeV to 6 for a mass of 5 TeV, depending on the scenario. In the interpretations of the $M_\mathrm{h}^{125}$ and $M_\mathrm{h, EFT}^{125}$ minimal supersymmetric SM benchmark scenarios, additional Higgs bosons with masses below 350 GeV are excluded at 95% CL.

3 data tables match query

Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2016 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.

Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2017 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.

Observed and expected distributions of the variable chosen for statistical inference in the low-mass analysis $m_{\tau\tau}$. Numerical values provided in this table correspond to Figure 22 of the auxilliary material of the publication, but restricted to 2018 data-taking year. All distributions are considered after a fit to data is performed using a background-only model, which includes the $\text{H}(125)$ boson. Some details on how the distributions should be used: 1) All given uncertainties correspond to systematic variations of $\pm1\sigma$. 2) Upper values ('plus' in the yaml file) correspond to an upward systematic variation of the parameter ($+1\sigma$). 3) Lower values ('minus' in the yaml file) correspond to a downward systematic variation of the parameter ($-1\sigma$). 4) These variations can have both positive and negative values, depending on the modelled effect. 5) Uncertainties with the same name should be treated as correlated, consistently across the upper and lower variations. 6) Systematic uncertainties with 'prop_' in the name treat limited background statistics per histogram bin, and are deployed with 'Barlow-Beeston-lite' approach. Details in https://arxiv.org/abs/1103.0354 section 5 7) Remaining systematic uncertainties alter the normalization, the shape, or both for a distribution. The nuisance parameter for such an uncertainty is mapped separately on the normalization and the shape variation components of the uncertainty. For normalization, $\ln$ mapping is used, for shape a spline. Details in https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/part2/settinguptheanalysis/#binned-shape-analysis 8) All nuisance parameters for the systematic uncertainties are modelled with a Gaussian pdf. 9) Gluon fusion contributions are all scaled to 1 pb. Please combine them using either the scale factors from 'Table SM Gluon Fusion Fractions', or using your own composition.


Measurement of the electroweak production of Z$\gamma$ and two jets in proton-proton collisions at $\sqrt{s} =$ 13 TeV and constraints on anomalous quartic gauge couplings

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
Phys.Rev.D 104 (2021) 072001, 2021.
Inspire Record 1869513 DOI 10.17182/hepdata.102954

The first observation of the electroweak (EW) production of a Z boson, a photon, and two forward jets (Z$\gamma$jj) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented. A data set corresponding to an integrated luminosity of 137 fb$^{-1}$, collected by the CMS experiment at the LHC in 2016-2018 is used. The measured fiducial cross section for EW Z$\gamma$jj is $\sigma_{\mathrm{EW}}$ = 5.21 $\pm$ 0.52 (stat) $\pm$ 0.56 (syst) fb = 5.21 $\pm$ 0.76 fb. Single-differential cross sections in photon, leading lepton, and leading jet transverse momenta, and double-differential cross sections in $m_{\mathrm{jj}}$ and $\lvert\Delta\eta_{\mathrm{jj}}\rvert$ are also measured. Exclusion limits on anomalous quartic gauge couplings are derived at 95% confidence level in terms of the effective field theory operators $\mathrm{M}_{0}$ to $\mathrm{M}_{5}$, $\mathrm{M}_{7}$, $\mathrm{T}_{0}$ to $\mathrm{T}_{2}$, and $\mathrm{T}_{5}$ to $\mathrm{T}_{9}$.

1 data table match query

The measured single-differential cross sections in photon transverse momenta for the pure electroweak Z$\gamma$jj production. The total uncertainty of the observed results includes the stastical uncertianty and the systematic uncertainty, while the uncertainty of the predicted results is the theoretical uncertainty from the MadGraph5_aMC@NLO. The last bin includes overflow events.


Version 4
Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
Phys.Rev.Lett. 125 (2020) 051801, 2020.
Inspire Record 1782650 DOI 10.17182/hepdata.93071

A search for heavy neutral Higgs bosons is performed using the LHC Run 2 data, corresponding to an integrated luminosity of 139 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV recorded with the ATLAS detector. The search for heavy resonances is performed over the mass range 0.2-2.5 TeV for the $\tau^+\tau^-$ decay with at least one $\tau$-lepton decaying into final states with hadrons. The data are in good agreement with the background prediction of the Standard Model. In the $M_{h}^{125}$ scenario of the Minimal Supersymmetric Standard Model, values of $\tan\beta>8$ and $\tan\beta>21$ are excluded at the 95% confidence level for neutral Higgs boson masses of 1.0 TeV and 1.5 TeV, respectively, where $\tan\beta$ is the ratio of the vacuum expectation values of the two Higgs doublets.

4 data tables match query

Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.

Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.

Expected 95% CL upper limits on the scalar boson production cross section times ditau branching fraction as a function of the scalar boson mass and the fraction of the b-associated production. The limits are calculated from a statistical combination of the 1l1tau_h and 2tau_h channels.

More…

Measurements of inclusive and differential cross-sections of combined $t\bar{t}\gamma$ and $tW\gamma$ production in the $e\mkern-2mu\mu$ channel at 13 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 09 (2020) 049, 2020.
Inspire Record 1806806 DOI 10.17182/hepdata.94915

Inclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton$-$proton collision data corresponding to an integrated luminosity of 139 fb$^{-1}$. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is $b$-tagged, are selected. The fiducial cross-section is measured to be $39.6\,^{+2.7}_{-2.3}\,\textrm{fb}$. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.

1 data table match query

The statistical correlation matrix of all the absolute differential cross-sections measured in the fiducial phase-space in the electron-muon channel.