Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV

The PHENIX collaboration Adare, A. ; Adler, S.S. ; Afanasiev, S. ; et al.
Phys.Rev.C 87 (2013) 054907, 2013.
Inspire Record 1126017 DOI 10.17182/hepdata.142660

Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at midrapidity. A wide p_T range is covered by measurements of nearly-real virtual photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield of the direct photons in d+Au collisions over the scaled p+p cross section is consistent with unity. Theoretical calculations assuming standard cold nuclear matter effects describe the data well for the entire p_T range. This indicates that the large enhancement of direct photons observed in Au+Au collisions for 1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear effects.

1 data table match query

$R_{dA}$ ($d$+Au data/scaled $p+p$ fit). Nuclear modification factor for $d$+Au, $R_{dA}$, as a function of $p_{T}$ . The closed and open symbols show the results from the virtual- and real-photon measurements, respectively. The values in the table are equal to this mean value. The bars and bands represent the point-to-point (ptp.) and $p_{T}$-correlated (cor.) uncertainties, respectively. The box on the right shows the uncertainty of $T_{dA}$ for $d$+Au. The curves indicate the theoretical calculations [24] with different combinations of the CNM effects such as the Cronin enhancement, isospin effect, nuclear shadowing and initial state energy loss.