Date

Subject_areas

Measurement of event shape distributions and moments in e+ e- --> hadrons at 91-GeV - 209-GeV and a determination of alpha(s).

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 40 (2005) 287-316, 2005.
Inspire Record 669402 DOI 10.17182/hepdata.48652

We have studied hadronic events from e+e- annihilation data at centre-of-mass energies from 91 to 209 GeV. We present distributions of event shape observables and their moments at each energy and compare with QCD Monte Carlo models. From the event shape distributions we extract the strong coupling alpha_s and test its evolution with energy scale. The results are consistent with the running of alpha_s expected from QCD. Combining all data, the value of alpha_s(M_Z) is determined to be alpha_s(M_Z) = 0.1191 +- 0.0005 (stat.) +- 0.0010 (expt.) +- 0.0011 (hadr.) +- 0.0044 (theo.). The energy evolution of the moments is also used to determine a value of alpha_s with slightly larger errors: alpha_s(M_Z) = 0.1223 +- 0.0005 (stat.) +- 0.0014 (expt.) +- 0.0016 (hadr.) +0.0054 -0.0036 (theo.).

27 data tables

Measured normalized differential distribution for 1-THRUST.

Measured normalized differential distribution for HEAVY-JET-MASS.

Measured normalized differential distribution for C-PARAMETER.

More…

Measurement of event shapes in deep inelastic scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Krakauer, D. ; Loizides, J.H. ; et al.
Eur.Phys.J.C 27 (2003) 531-545, 2003.
Inspire Record 602252 DOI 10.17182/hepdata.46536

Inclusive event-shape variables have been measured in the current region of the Breit frame for neutral current deep inelastic ep scattering using an integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA. The variables studied included thrust, jet broadening and invariant jet mass. The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6, where Q^2 is the virtuality of the exchanged boson and x is the Bjorken variable. The Q dependence of the shape variables has been used in conjunction with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative corrections (`power corrections') to investigate the validity of this approach.

6 data tables

Mean value of the event shape variables 1-THRUST(C=T) in different Q**2 and X bins.

Mean value of the event shape variables B(C=T) in different Q**2 and X bins.

Mean value of the event shape variables RHO**2 in different Q**2 and X bins.

More…

Properties of hadronic final states in diffractive deep inelastic e p scattering at HERA.

The ZEUS collaboration Chekanov, S. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Rev.D 65 (2002) 052001, 2002.
Inspire Record 560352 DOI 10.17182/hepdata.46869

Characteristics of the hadronic final state of diffractive deep inelastic scattering events, ep -> eXp, were studied in the kinematic range 4 < M_X < 35 GeV, 4 < Q^2 < 150 GeV^2, 70 < W < 250 GeV and 0.0003 < x_pom < 0.03 with the ZEUS detector at HERA using an integrated luminosity of 13.8 pb^{-1}. The events were tagged by identifying the diffractively scattered proton using the leading proton spectrometer. The properties of the hadronic final state, X, were studied in its center-of-mass frame using thrust, thrust angle, sphericity, energy flow, transverse energy flow and ``seagull'' distributions. As the invariant mass of the system increases, the final state becomes more collimated, more aligned and more asymmetric in the average transverse momentum with respect to the direction of the virtual photon. Comparisons of the properties of the hadronic final state with predictions from various Monte Carlo model generators suggest that the final state is dominated by qqg states at the parton level.

16 data tables

Thrust distribution for a DIS hadronic final state mass between 11 and 17.8GeV.

Thrust distribution for a DIS hadronic final state mass between 17.8 and 27.7 GeV.

Sphericity distribution for a DIS hadronic final state mass between 11 and 17.8 GeV.

More…

Thrust jet analysis of deep-inelastic large-rapidity-gap events.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Eur.Phys.J.C 1 (1998) 495-507, 1998.
Inspire Record 451036 DOI 10.17182/hepdata.44396

A thrust analysis of Large-Rapidity-Gap events in deep-inelastic ep collisions is presented, using data taken with the H1 detector at HERA in 1994. The average thrust of the final states X, which emerge from the dissociation of virtual photons in the range 10 < Q2 < 100 GeV2, grows with hadronic mass M_X and implies a dominant 2-jet topology. Thrust is found to decrease with growing Pt, the thrust jet momentum transverse to the photon-proton collision axis. Distributions of Pt2 are consistent with being independent of MX. They show a strong alignment of the thrust axis with the photon-proton collision axis, and have a large high-Pt tail. The correlation of thrust with MX is similar to that in e+e- annihilation at sqrt(see)=MX, but with lower values of thrust in the ep data. The data cannot be described by interpreting the dissociated system X as a qqbar state but inclusion of a substantial fraction of qqbarg parton configurations leads naturally to the observed properties. The soft colour exchange interaction model does not describe the data.

7 data tables

PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).

PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).

PT distribution of the photon-originated jet relative to the to the GAMMA* P collision axis in the jet center-of-mass frame, divided by the total GAMMA* P cross section for the respective M_x bin. Jet momentum defined as vector sum of momenta in the positive(negative) thrust hemisphere (thrust jet momentum).

More…

Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 421 (1998) 368-384, 1998.
Inspire Record 450130 DOI 10.17182/hepdata.44419

A global event shape analysis of the multihadronic final states observed in neutral current deep inelastic scattering events with a large rapidity gap with respect to the proton direction is presented. The analysis is performed in the range $5 \leq Q^2 \leq 185\gev^2$ and $160 \leq W \leq 250\gev$, where $Q^2$ is the virtuality of the photon and $W$ is the virtual-photon proton centre of mass energy. Particular emphasis is placed on the dependence of the shape variables, measured in the $\gamma^*-$pomeron rest frame, on the mass of the hadronic final state, $M_X$. With increasing $M_X$ the multihadronic final state becomes more collimated and planar. The experimental results are compared with several models which attempt to describe diffractive events. The broadening effects exhibited by the data require in these models a significant gluon component of the pomeron.

21 data tables

Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.

Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.

Measured (uncorrected) polar distribution of the sphericity axis w.r.t. thevirtual photon direction in the (gamma*-pomeron)rest frame Data are in bins of the mass of the final state hadronic system.

More…

Measurement of event shape variables in deep inelastic e p scattering.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Phys.Lett.B 406 (1997) 256-270, 1997.
Inspire Record 443753 DOI 10.17182/hepdata.23948

Deep inelastic e^+ scattering data, taken with the H1 detector at HERA, are used to study the event shape variables thrust, jet broadening and jet mass in the current hemisphere of the Breit frame over a large range of momentum transfers Q between 7 GeV and 100 GeV. The data are compared with results from e^+e^- experiments. Using second order QCD calculations and an approach to relate hadronisation effects to power corrections an analysis of the Q dependences of the means of the event shape parameters is presented, from which both the power corrections and the strong coupling constant are determined without any assumption on fragmentation models. The power corrections of all event shape variables investigated follow a 1/Q behaviour and can be described by a common parameter alpha_0.

6 data tables

The data on the differential event shape distrubutions are shown only as a illustration to show the agreement with the Lepto and pQCD calculations and contain only statistical errors. The authors are preparing another paper which details these differential distributions including full point-to-point systematics.

Usual definition of Thrust.

The same as usual thrust definition but with the thrust axis replaced by the current hemisphere axis (0,0,-1), where positive Z direction coincide with theincoming proton beam direction.

More…

QCD studies with e+ e- annihilation data at 161-GeV.

The OPAL collaboration Ackerstaff, K. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 75 (1997) 193-207, 1997.
Inspire Record 440721 DOI 10.17182/hepdata.47487

We have studied hadronic events produced at LEP at a centre-of-mass energy of 161 GeV. We present distributions of event shape variables, jet rates, charged particle momentum spectra and multiplicities. We determine the strong coupling strength to be αs(161 GeV) = 0.101±0.005(stat.)±0.007(syst.), the mean charged particle multiplicity to be 〈nch〉(161 GeV) = 24.46 ± 0.45(stat.) ± 0.44(syst.) and the position of the peak in the ξp = ln(1/xp) distribution to be ξ0(161 GeV) = 4.00 ±0.03(stat.)±0.04(syst.). These results are compared to data taken at lower centre-of-mass energies and to analytic QCD or Monte Carlo predictions. Our measured value of αs(161 GeV) is consistent with other measurements of αs. Within the current statistical and systematic uncertainties, the PYTHIA, HERWIG and ARIADNE QCD Monte Carlo models and analytic calculations are in overall agreement with our measurements. The COJETS QCD Monte Carlo is in general agreement with the data for momentum weighted distributions like Thrust, but predicts a significantly larger charged particle multiplicity than is observed experimentally.

26 data tables

Determination of alpha_s.

Multiplicity and higher moments.

Thrust distribution.

More…

Measurement of alpha-s from the structure of particle clusters produced in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 257 (1991) 479-491, 1991.
Inspire Record 302771 DOI 10.17182/hepdata.29466

Using 106 000 hadronic events obtained with the ALEPH detector at LEP at energies close to the Z resonance peak, the strong coupling constant α s is measured by an analysis of energy-energy correlations (EEC) and the global event shape variables thrust, C -parameter and oblateness. It is shown that the theoretical uncertainties can be significantly reduced if the final state particles are first combined in clusters using a minimum scaled invariant mass cut, Y cut , before these variables are computed. The combined result from all shape variables of pre-clustered events is α s ( M Z 2 = 0.117±0.005 for a renormalization scale μ= 1 2 M Z . For μ values between M Z and the b-quark mass, the result changes by −0.009 +0.006 .

2 data tables

No description provided.

Error contains both experimental and theoretical errors.