The reaction π − + p → π − + π − + π + + p at 25 GeV/ c was studied in the mass region M 3 π ⩾ 1.8 GeV with leading π + . The mass spectrum of the π + π − system shows peaks corresponding to the ϱ 0 , f and g 0 resonances and an enhancement around 1.9 GeV. Evidence is presented for a J P = 3 + s-wave g 0 π − state (A 4 ) similar to the ϱ 0 π − (A 1 ) and fπ − (A 3 ) threshold enhancements.
No description provided.
Inelastic differential cross sections have been measured for π±p, K±p, and p±p at 140- and 175-GeV/c incident momentum over a |t| range from 0.05 to 0.6 GeV2 and covering a missing-mass region from 2.4 to 9 GeV2. For Mx2 greater than 4 GeV2, the invariant quantity Mx2d2σdtdMx2 was found to be independent of Mx2 at fixed t and could be adequately described by a simple triple-Pomeron form. The values obtained for the triple-Pomeron couplings are identical within statistics for all channels.
Data from 140 GeV and 175 GeV are combined. The distributions are fit to CONST*(SLOPE(C=1)*T+SLOPE(C=2)*T**2).
Reactions K + n → (K π )N have been studied using data from the CERN 2 m deuterium bubble chamber obtained with incident K + of 8.25 GeV/ c . There is an abundant production of K ∗ (892) and K ∗ (1420). The reaction and K ∗ resonance production cross sections are presented. K ∗ production and decay angular distributions are analyzed. Charge-exchange reactions are dominated by unnatural parity exchange and the non-charge-exchange reaction by natural parity exchange. The K ∗ 0 (892) data are in good agreement with the predictions of an OPE absorption model. A broad enhancement around 1850 MeV could be interpreted as a signal for the K ∗ 0 (1780).
No description provided.
No description provided.
FIT TO D(SIG)/DT = A*EXP(SLOPE*TP) FOR K* EVENTS WITH -TP < 0.24 GEV**2.
The ratio of π+p to pp elastic scattering is found to be smoothly varying over the range −t=0.03 to 0.4 GeV2. It is well fitted by a single exponential, indicating the forward behavior must be quite similar for the two reactions.
ACTUALLY THE DATA ARE THE EXPONENTIAL SLOPE OF THE RATIO OF D(SIG)/DT FOR THE TWO REACTIONS.
Using a high statistics sample of K − p interactions at 4.2 GeV/ c , the production and decay properties of the Ξ ∗ (1820) are discussed. The mass and width are found to be M = (1823 ± 2) MeV and Γ = (21 ± 7) MeV. Evidence is found for Ξ ∗ (2030) in the Σ K ̄ channel and for a new Ξ ∗ at a mass of 2120 MeV in the ΛK − channel.
XI(1820)- PRODUCTION CROSS SECTIONS ARE FOR -UP < 3 GEV**2 AND ARE CORRECTED FOR ISOSPIN AND UNSEEN DECAY MODES.
No description provided.
An analysis of the Kπ-system in the mass region of the K ∗ (1780), based on a sample of 46000 K s o π + final states, is presented. Evidence for a relatively narrow width, τ ≈ 100 MeV, and for the spin parity assignment J P = 3 − is found.
SLOPE DETERMINED WITHIN 0.2 < -T < 0.8 GEV**2 AND USED TO ESTIMATE TOTAL CROSS SECTION.
The reaction p p → K ∗ K does not exhibit any s -channel resonance effect between 1 and 2.5 GeV/ c . On the contrary, the data on p p → K ∗∓ K ± are compatible with an exchange mechanism in the t - and u -channels above 1.5 GeV/ c . Strong similarities are found with p p → K − K + and K ∗− K ∗+ . The polarisation of K ∗± is given. The reaction p p → K ∗0 K 0 vanishes above 1.5 GeV/ c
No description provided.
LEG(L=0) = SIG/(4*PI).
LEG(L=0) = SIG/(4*PI).
We present results from a measurement of the differential cross sections for Σ−p, Ξ−p, and π−p elastic scattering at 23 GeV/c. We have collected samples of 6200 Σ−p events, 67 Ξ−p events, and 30 000 π−p events in the interval 0.10<|t|<0.23 (GeV/c)2.
No description provided.
No description provided.
The results presented in this paper were obtained from a 105 000 frame exposure of the FNAL Hybrid Proportional Wire Chamber-30 inch Bubble Chamber System, in a tagged beam of 147 GeV/ c negative particles. Elastic, total and topological cross sections were obtained for both π − p and K − p interactions. Comparisons with other data, taken with various beam particles over large momentum intervals, show good agreement with KNO scaling, and similarity in the scaling behavior of σ n for the different beam particles.
THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT. THE ERRORS INCLUDE SOME SYSTEMATIC ERRORS.
THE FORWARD CROSS SECTION AGREES WELL WITH THE OPTICAL POINT FROM TOTAL CROSS SECTION MEASUREMENTS.
THESE CROSS SECTIONS ARE NOT NORMALIZED TO ANY OTHER ABSOLUTE MEASUREMENT.
The inclusive cross sections, measured up to large values of effective mass (≡q22ν), are well fitted by dσd3p=Bxexp(−αxp22mx). Values of Bx and αx are given for Be, C, Cu, and Ta at the incident proton energy of 600 MeV and for Ag, Ta, and Pt at 800 MeV. Extremely large dp and tp ratios and large A and q2 dependences of the relative cross sections are observed.
D3(SIG)/D3(P) is fitted by the equation: CONST*exp(-SLOPE*P**2/(2*M)). CONST is presented per nucleon.
D3(SIG)/D3(P) is fitted by the equation: CONST*exp(-SLOPE*P**2/(2*M)). CONST is presented per nucleon.