We report on coherent interactions in a 2.5 event/μb K − d exposure. The predominant channel studied is K − d → K − π + gp − d (415 events). We find strong Q- and L-production in the (K ππ ) system. The production mechanism determines I = 1 2 for both enhancements and a spin-parity in the series 0 − , 1 + ,2 − … . A spin-parity analysis shows the Q to be a 1 + object, while the L is 1 + or 2 − , although a higher spin cannot be excluded. The cross sections for Q and L production and other final states are presented.
CORRECTED FOR UNSEEN RECOIL DEUTERONS BY EXTRAPOLATION. (UNCORRECTED CROSS SECTIONS ARE THOSE OBSERVED WITH P(DEUT) > 140 MEV/C).
Data on p p annihilations at rest into K 1 0 K 1 0 ω 0 and K + K − ω 0 are discuss New measurements for the mass, the width and the branching ratio of the ω 0 are presented. Evidence for quasi two-body annihilations p p → ϕπ, p ̄ p → S ∗ π is discussed.
PRODUCTION RATE FOR ANNIHILATION AT REST.
The reaction K + p → K ∗o (892) Δ ++ (1236) has been studied at 3 GeV/ c in both a hydrogen and a deuterium bubble chamber experiment. The production mechanism is described by a Regge-type model using π- and B-exchange. The joint decay distributions are analysed in various frames and compared with quark-model predictions.
No description provided.
No description provided.
No description provided.
At 3 GeV/ c , the total and differential cross sections of the reactions K − n → Y π − have been determined for nine S = −1 baryonic states. Backward peaks associated with a dip near u = −0.2 are observed in many cases. They have been interpreted, for the isospin-zero Y-states, in terms of a proton-exchange mechanism. The backward peaks in the reactions K − n → Λπ − and K − n → Σ o π − have been more quantitatively related to the backward π N → N π differential cross sections at the same energy. This comparison leads to the conclusion, that the first reaction is dominated by nucleon exchange, whereas the second one requires a more complex exchange mechanism.
No description provided.
No description provided.
No description provided.
Proton Compton scattering has been measured in a coincidence experiment at photon energies between 2.2 and 7 GeV and four-momentum transfers t between −0.06 and −0.85(GeV/ c ) 2 . For ∣ t ∣ ⩽ 0.4 (GeV/ c ) 2 fits of the form d σ /d t = ( A · exp( Bt )) yield forward cross sections A in good agreement with the values calculated from the total hadronic γ p cross section via the optical theorem and the forward dispersion relation. The slopes B do not show a significant energy dependence, the mean value being 5.7 ± 0.4 (GeV/ c ) −2 . The cross section is substantially larger than predicted by the vector-meson dominance model.
No description provided.
No description provided.
No description provided.
We have measured the reaction γ+n→π0+n at a photon energy of 4 GeV for 0.2<~−t<~1.8(GeVc)2. The cross section is slightly less than that with protons as a target.
No description provided.
In an analysis of the reaction K − n →Λ4π at 3 GeV c we find evidence for the production of the B(1220) resonance, mainly decaying in ωπ. For the mass and width we find (1236 ± 15) MeV c 2 and (132±20) MeV c 2 respectively. The cross section for the reaction K − n→ Λ +B(1220) is found to be (102±26) μ b.
No description provided.
Previous measurements of the cross section asymmetry for single π + production on protons with linearly polarized photons of 3.4 GeV have been extended to momentum transfers within the forward peak, i.e. − = 0.0026, 0.006 and 0.01 (GeV/ c ) 2 . The results are in good agreement with pion exchange models.
Axis error includes +- 6/6 contribution.
The t -dependence of the differential cross-section for elastic neutron-proton charge exchange scattering has been measured at 8, 19.2 and 24 GeV/ c . The extremely narrow peak in the forward direction, previously observed for momenta up to 8 GeV/ c , presists at the higher momenta, and the t -dependence shows practically no change with energy. Approximate values of the absolute cross-section were also determined for these momenta.
No description provided.
No description provided.
No description provided.
Nucleon resonance production in the two-body reaction p + p → p + N ∗ has been studied at 24 GeV/ c incident momentum for angles from 12 to 117 mrad by measuring proton momentum spectra from the elastic peak down to a momentum corresponding to a missing mass of about 2.6 GeV.
No description provided.