Measurement of the proton structure function F2 and sigma(tot)(gamma* p) at low Q**2 and very low x at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 432-448, 1997.
Inspire Record 445553 DOI 10.17182/hepdata.44513

A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q^2 inelastic neutral current scattering, e^{+}p \to e^{+}X, at HERA. A measurement of the proton structure function F_2 and the total virtual photon-proton (\gamma^*p) cross-section is presented for 0.11 \le Q^{2} \le 0.65 GeV^2 and 2 \times 10^{-6} \le x \le 6 \times 10^{-5}, corresponding to a range in the \gamma^{*}p c.m. energy of 100 \le W \le 230 GeV. Comparisons with various models are also presented.

8 data tables

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

Measured F2 values with the assumption FL=0. The second systematic error isthe change in F2 assuming a value for FL given by VDM.

More…

D* production in deep inelastic scattering at HERA.

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Phys.Lett.B 407 (1997) 402-418, 1997.
Inspire Record 443964 DOI 10.17182/hepdata.44585

This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel $D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ $ (+ c.c.) has been used in the study. The $e^+p$ cross section for inclusive D^{*\pm} production with $5<Q^2<100 GeV^2$ and $y<0.7$ is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {$1.3<p_T(D^{*\pm})<9.0$ GeV and $| \eta(D^{*\pm}) |<1.5$}. Differential cross sections as functions of p_T(D^{*\pm}), $\eta(D^{*\pm}), W$ and $Q^2$ are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and $\eta$(D^{*\pm}), the charm contribution $F_2^{c\bar{c}}(x,Q^2)$ to the proton structure function is determined for Bjorken $x$ between 2 $\cdot$ 10$^{-4}$ and 5 $\cdot$ 10$^{-3}$.

11 data tables

No description provided.

Integrated charm cross sections in two Q**2 regions.

Distribution of the fractional momentum of the D* in the gamma*-p system.

More…

Measurement of elastic J / psi photoproduction at HERA

The ZEUS collaboration Breitweg, J. ; Derrick, M. ; Krakauer, D. ; et al.
Z.Phys.C 75 (1997) 215-228, 1997.
Inspire Record 442537 DOI 10.17182/hepdata.44626

The reaction gamma p -> J/Psi p has been studied in ep interactions using the ZEUS detector at HERA. The cross section for elastic J/Psi photoproduction has been measured as a function of the photon-proton centre of mass energy W in the range 40 < W < 140 GeV at a median photon virtuality Q^2 of 5*10^{-5} GeV^2. The photoproduction cross section, sigma_{gamma p -> J/Psi p}, is observed to rise steeply with W. A fit to the data presented in this paper to determine the parameter $\delta$ in the form sigma_{gamma p -> J/Psi p} \propto W^{\delta} yields the value \delta = 0.92 \pm 0.14 \pm 0.10. The differential cross section dsigma/d|t| is presented over the range |t| < 1.0 GeV^2 where t is the square of the four-momentum exchanged at the proton vertex. d\sigma/d|t| falls exponentially with a slope parameter of 4.6 \pm 0.4 (+0.4-0.6) GeV^{-2}. The measured decay angular distributions are consistent with s-channel helicity conservation.

9 data tables

Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.

Data from the muon channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.

Data from the electron channel. Second systematic error is that attributed to the uncertainty in the modelof proton dissociation used for background subtraction.

More…

Measurement of the F2 structure function in deep inelastic e+ p scattering using 1994 data from the ZEUS detector at HERA.

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 72 (1996) 399-424, 1996.
Inspire Record 420332 DOI 10.17182/hepdata.11638

We present measurements of the structure function \Ft\ in $e~+p$ scattering at HERA in the range $3.5\;\Gevsq < \qsd < 5000\;\Gevsq$. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At $ \qsd < 35 \;\Gevsq$ the range in $x$ now spans $6.3\cdot 10~{-5} < x < 0.08$ providing overlap with measurements from fixed target experiments. At values of $Q~2$ above 1000 GeV$~2$ the $x$ range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic region. The structure function rises as \x\ decreases; the rise becomes more pronounced as \qsd\ increases. The behaviour of the structure function data is well described by next-to-leading order perturbative QCD as implemented in the DGLAP evolution equations.

84 data tables

No description provided.

No description provided.

No description provided.

More…

Dijet angular distributions in direct and resolved photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 384 (1996) 96009318 401-413, 1996.
Inspire Record 418926 DOI 10.17182/hepdata.44759

Jet photoproduction, where the two highest transverse energy (ET<sup loc="post">jet</sup>) jets have ET<sup loc="post">jet</sup> above 6 GeV and a jet-jet invariant mass above 23 GeV, has been studied with the ZEUS detector at the HERA ep collider. Resolved and direct photoproduction samples have been separated. The cross section as a function of the angle between the jet-jet axis and the beam direction in the dijet rest frame has been measured for the two samples. The measured angular distributions differ markedly from each other. They agree with the predictions of QCD calculations, where the different angular distributions reflect the different spins of the quark and gluon exchanged in the hard subprocess.

2 data tables

Direct processes, XOBS >= 0.75.

Resolved processes, XOBS <= 0.75.


Measurement of the Reaction $\gamma~* p \to \phi p$ in Deep Inelastic $e~+p$ Scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 380 (1996) 220-234, 1996.
Inspire Record 418041 DOI 10.17182/hepdata.44769

The production of $\phi$ mesons in the reaction $e~{+}p \rightarrow e~{+} \phi p$ ($\phi \rightarrow K~{+}K~{-}$), for $7 < Q~2 < 25$ GeV$~2$ and for virtual photon-proton centre of mass energies ($W$) in the range 42-134 GeV, has been studied with the ZEUS detector at HERA. When compared to lower energy data at similar $Q~2$, the results show that the $\gamma~*p \rightarrow \phid p$ cross section rises strongly with $W$. This behaviour is similar to that previously found for the $\gamma~*p \rightarrow \rho~0 p$ cross section. This strong dependence cannot be explained by production through soft pomeron exchange. It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small $x$. The ratio of $\sigma (\phi) / \sigma (\rho~0)$, which has previously been determined by ZEUS to be 0.065 $\pm$ 0.013 (stat.) in photoproduction at a mean $W$ of 70 GeV, is measured to be 0.18 $\pm $ 0.05 (stat.) $\pm$ 0.03 (syst.) at a mean $Q~2$ of 12.3 GeV$~2$ and mean $W$ of $\approx$ 100 GeV and is thus approaching at large $Q~2$ the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism.

4 data tables

No description provided.

Additional 32 PCT Systematic error.

Additional 32 PCT Systematic error.

More…

Measurement of $\alpha_S$ from Jet Rates in Deep Inelastic Scattering at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 363 (1995) 201-216, 1995.
Inspire Record 400436 DOI 10.17182/hepdata.44947

Jet production in deep inelastic scattering for $120<Q~2<3600$GeV$~2$ has been studied using data from an integrated luminosity of 3.2pb$~{-1}$ collected with the ZEUS detector at HERA. Jets are identified with the JADE algorithm. A cut on the angular distribution of parton emission in the $\gamma~*$-parton centre-of-mass system minimises the experimental and theoretical uncertainties in the determination of the jet rates. The jet rates, when compared to ${\cal O}$($\alpha_{s}$~2$) perturbative QCD calculations, allow a precise determination of $\alpha_{s}(Q)$ in three $Q~2$-intervals. The values are consistent with a running of $\alpha_{s}(Q)$, as expected from QCD. Extrapolating to $Q=M_{Z~0}$ yields $\alpha_{s}(M_{Z~0}) = 0.117\pm0.005(stat)~{+0.004}_{-0.005}(syst_{exp}) {\pm0.007}(syst_{theory})$.

3 data tables

2+1 jet rate as a function of ycut the jet algorithm cut-off value. Statistical errors only.

Measured values of Lambda-QCD in the MS Bar scheme and alpha_s as a function of Q**2. The second systematic uncertainty is related to the theoretical uncertainties .

Strong coupling constant alpha_s extrapolated to the Z0 mass.


Measurement of the Proton Structure Function ${F_2}$ at low ${x}$ and low ${Q~2}$ at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Z.Phys.C 69 (1996) 607-620, 1996.
Inspire Record 401305 DOI 10.17182/hepdata.44843

We report on a measurement of the proton structure function $F_2$ in the range $3.5\times10~{-5}\leq x \leq 4\times10~{-3}$ and 1.5 ${\rm GeV~2} \leq Q~2 \leq15$ ${\rm GeV~2}$ at the $ep$ collider HERA operating at a centre-of-mass energy of $\sqrt{s} = 300$ ${\rm GeV}$. The rise of $F_2$ with decreasing $x$ observed in the previous HERA measurements persists in this lower $x$ and $Q~2$ range. The $Q~2$ evolution of $F_2$, even at the lowest $Q~2$ and $x$ measured, is consistent with perturbative QCD.

13 data tables

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

Data from shifted vertex analysis. Overall normalization error of 3% is notincluded.

More…

Rapidity Gaps between Jets in Photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 369 (1996) 55-68, 1996.
Inspire Record 401492 DOI 10.17182/hepdata.44803

Photoproduction events which have two or more jets have been studied in the $W_{\gamma p}$ range 135GeV $< W_{\gamma p} <$ 280GeV with the ZEUS detector at HERA. A class of events is observed with little hadronic activity between the jets. The jets are separated by pseudorapidity intervals ($\Delta\eta$) of up to four units and have transverse energies greater than 6GeV. A gap is defined as the absence between the jets of particles with transverse energy greater than 300MeV. The fraction of events containing a gap is measured as a function of \deta. It decreases exponentially as expected for processes in which colour is exchanged between the jets, up to a value of $\Delta\eta \sim 3$, then reaches a constant value of about 0.1. The excess above the exponential fall-off can be interpreted as evidence for hard diffractive scattering via a strongly interacting colour singlet object.

2 data tables

No description provided.

No description provided.


Study of the photon remnant in resolved photoproduction at HERA

The ZEUS collaboration Derrick, M. ; Krakauer, D. ; Magill, S. ; et al.
Phys.Lett.B 354 (1995) 163-177, 1995.
Inspire Record 392038 DOI 10.17182/hepdata.44946

Photoproduction at HERA is studied in $ep$ collisions, with the ZEUS detector, for $\gamma p$ centre-of-mass energies ranging from 130-270 GeV. A sample of events with two high-$p_T$ jets ($p_T > 6$ GeV, $\eta <1.6$) and a third cluster in the approximate direction of the electron beam is isolated using a clustering algorithm. These events are mostly due to resolved photoproduction. The third cluster is identified as the photon remnant. Its properties, such as the transverse and longitudinal energy flows around the axis of the cluster, are consistent with those commonly attributed to jets, and in particular with those found for the two jets in these events. The mean value of the photon remnant $p_T$ with respect to the beam axis is measured to be $2.1 \pm 0.2$ GeV, which demonstrates substantial mean transverse momenta for the photon remnant.

3 data tables

Pseudorapidity distribution of the third cluster corrected to the hadron level.

Corrected PT distribution of the third cluster corrected to the hadron level.

Corrected Energy distribution of the third cluster corrected to the hadron level.