The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.
The chiral magnetic effect (CME) is a phenomenon that arises from the QCD anomaly in the presence of an external magnetic field. The experimental search for its evidence has been one of the key goals of the physics program of the Relativistic Heavy-Ion Collider. The STAR collaboration has previously presented the results of a blind analysis of isobar collisions (${^{96}_{44}\text{Ru}}+{^{96}_{44}\text{Ru}}$, ${^{96}_{40}\text{Zr}}+{^{96}_{40}\text{Zr}}$) in the search for the CME. The isobar ratio ($Y$) of CME-sensitive observable, charge separation scaled by elliptic anisotropy, is close to but systematically larger than the inverse multiplicity ratio, the naive background baseline. This indicates the potential existence of a CME signal and the presence of remaining nonflow background due to two- and three-particle correlations, which are different between the isobars. In this post-blind analysis, we estimate the contributions from those nonflow correlations as a background baseline to $Y$, utilizing the isobar data as well as Heavy Ion Jet Interaction Generator simulations. This baseline is found consistent with the isobar ratio measurement, and an upper limit of 10% at 95% confidence level is extracted for the CME fraction in the charge separation measurement in isobar collisions at $\sqrt{s_{\rm NN}}=200$ GeV.
Figure 1a
Figure 1b
Figure 1c
The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$ produced in $^{40}$Ar+$^{45}$Sc collisions at beam momenta of 13$A$, 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$~\GeVc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the $K^\pm$/$\pi^\pm$ ratios as well as of inverse slope parameters of the $K^\pm$ transverse mass distributions are placed in between those found in inelastic $p$+$p$ and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical or dynamical models.
Two-dimensional distributions ($y$ vs. $p_T$ ) of double differential yields of $p$ at 13$A$ GeV/c
Two-dimensional distributions ($y$ vs. $p_T$ ) of double differential yields of $\pi^+$ at 13$A$ GeV/c
Two-dimensional distributions ($y$ vs. $p_T$ ) of double differential yields of $\pi^-$ at 13$A$ GeV/c
The measurement of hard scatterings in proton-nucleus collisions has resulted in a greater understanding of both the proton and nuclear structure. ATLAS measured the centrality dependence of the dijet yield using 165 nb$^{-1}$ of $p$+Pb data collected at $\sqrt{s_{_\text{NN}}}$ = 8.16 TeV in 2016. The event centrality, which reflects the $p$+Pb impact parameter, is characterized by the total transverse energy registered in the Pb-going side of the forward calorimeter. The central-to-peripheral ratio of the scaled dijet yields, $R_\mathrm{CP}$, is evaluated, and the results are presented as a function of variables that reflect the kinematics of the initial hard parton scattering process. The $R_\mathrm{CP}$ shows a scaling with the Bjorken-$x$ of the parton originating from the proton, $x_p$, while no such trend is observed as a function of $x_\mathrm{Pb}$. This analysis provides unique input to understanding the role of small proton spatial configurations in $p$+Pb collisions by covering parton momentum fractions from the valence region down to $x_p \sim 10^{-3}$ and $x_\mathrm{Pb}\sim 4\cdot10^{-4}$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-3.0 < y_b < -2.0$ and $0.0 < y^* < 1.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-2.0 < y_b < -1.0$ and $0.0 < y^* < 1.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.
$R_\text{CP}$ plotted as a function of approximated $x_p$ for $-2.0 < y_b < -1.0$ and $1.0 < y^* < 2.0$, constructed using $\langle y_{\text{b}} \rangle$ and $\langle y^{*} \rangle$. The proton-going direction is defined by $y_{\text{b}} > 0$.
Differential cross-sections are measured for the production of four charged leptons in association with two jets. These measurements are sensitive to final states in which the jets are produced via the strong interaction as well as to the purely-electroweak vector boson scattering process. The analysis is performed using proton-proton collision data collected by ATLAS at $\sqrt{s}=13$ TeV and with an integrated luminosity of 140 fb$^{-1}$. The data are corrected for the effects of detector inefficiency and resolution and are compared to state-of-the-art Monte Carlo event generator predictions. The differential cross-sections are used to search for anomalous weak-boson self-interactions that are induced by dimension-six and dimension-eight operators in Standard Model effective field theory.
Predicted and observed yields as a function of $m_{jj}$ in the VBS-Enhanced region. Overflow events are included in the last bin of the distribution.
Predicted and observed yields as a function of $m_{jj}$ in the VBS-Suppressed region. Overflow events are included in the last bin of the distribution.
Predicted and observed yields as a function of $m_{4\ell}$ in the VBS-Enhanced region. Overflow events are included in the last bin of the distribution.
A search for a new massive charged gauge boson, $W'$, is performed with the ATLAS detector at the LHC. The dataset used in this analysis was collected from proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =13$ TeV, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The reconstructed $tb$ invariant mass is used to search for a $W'$ boson decaying into a top quark and a bottom quark. The result is interpreted in terms of a $W'$ boson with purely right-handed or left-handed chirality in a mass range of 0.5-6 TeV. Different values for the coupling of the $W'$ boson to the top and bottom quarks are considered, taking into account interference with single-top-quark production in the $s$-channel. No significant deviation from the background prediction is observed. The results are expressed as upper limits on the $W' \rightarrow tb$ production cross-section times branching ratio as a function of the $W'$-boson mass and in the plane of the coupling vs the $W'$-boson mass.
<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <br><br> <b>Exclusion contours:</b> <ul> <li><a href="?table=contour_lh">$W^{\prime}_L$ exclusion contour</a> <li><a href="?table=contour_rh">$W^{\prime}_R$ exclusion contour</a> </ul> <b>Upper limits:</b> <ul> <li><a href="?table=limit_lh_gf05">$W^{\prime}_L$ $g^{\prime}/g$ = 0.5 upper limit</a> <li><a href="?table=limit_lh_gf10">$W^{\prime}_L$ $g^{\prime}/g$ = 1.0 upper limit</a> <li><a href="?table=limit_lh_gf20">$W^{\prime}_L$ $g^{\prime}/g$ = 2.0 upper limit</a> <li><a href="?table=limit_rh_gf05">$W^{\prime}_R$ $g^{\prime}/g$ = 0.5 upper limit</a> <li><a href="?table=limit_rh_gf10">$W^{\prime}_R$ $g^{\prime}/g$ = 1.0 upper limit</a> <li><a href="?table=limit_rh_gf20">$W^{\prime}_R$ $g^{\prime}/g$ = 2.0 upper limit</a> </ul> <b>Kinematic distributions:</b> <ul> <li><a href="?table=0l_sr1">0L channel Signal Region 1</a> <li><a href="?table=0l_sr2">0L channel Signal Region 2</a> <li><a href="?table=0l_sr3">0L channel Signal Region 3</a> <li><a href="?table=0l_vr">0L channel Validation Region</a> <li><a href="?table=1l_sr_2j1b">1L channel 2j1b Signal Region</a> <li><a href="?table=1l_sr_3j1b">1L channel 3j1b Signal Region</a> <li><a href="?table=1l_sr_2j2b">1L channel 2j2b Signal Region</a> <li><a href="?table=1l_sr_3j2b">1L channel 3j2b Signal Region</a> <li><a href="?table=1l_cr_2j1b">1L channel 2j1b Control Region</a> <li><a href="?table=1l_cr_3j1b">1L channel 3j1b Control Region</a> <li><a href="?table=1l_vr_2j1b">1L channel 2j1b Validation Region</a> <li><a href="?table=1l_vr_3j1b">1L channel 3j1b Validation Region</a> </ul> <b>Acceptance and efficiencies:</b> <ul> <li><a href="?table=acc_0l_lh_gf10">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_lh_gf05">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_0l_lh_gf20">0L channel $W^{\prime}_L$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf10">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf05">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_1l_lh_gf20">1L channel $W^{\prime}_L$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf10">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf05">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_0l_rh_gf20">0L channel $W^{\prime}_R$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf10">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 1.0 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf05">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 0.5 Acc. X Eff.</a> <li><a href="?table=acc_1l_rh_gf20">1L channel $W^{\prime}_R$ $g^{\prime}/g$ = 2.0 Acc. X Eff.</a> </ul>
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 1 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
Distribution (events/100 GeV) of the reconstructed $m_{tb}$ for data and backgrounds in the 0-lepton channel's signal region 2 after the background-only fit to data. The systematics uncertainty is shown for the post-fit background sum, including the background statistical uncertainty. The individual background components are obtained after the fit, too. There are also the pre-fit background sum and the expected signal distribution. The distribution of the $W^{\prime}$ boson signal for a mass of 3 TeV is normalised to the predicted cross-section. The last bin in each distribution includes overflow.
We present a search for magnetic monopoles and high-electric-charge objects using LHC Run 2 $\sqrt{s} =$13 TeV proton$-$proton collisions recorded by the ATLAS detector. A total integrated luminosity of 138 fb$^{-1}$ was collected by a specialized trigger. No highly ionizing particle candidate was observed. Considering the Drell-Yan and photon-fusion pair production mechanisms as benchmark models, cross-section upper limits are presented for spin-0 and spin-$\frac{1}{2}$ magnetic monopoles of magnetic charge $1g_\textrm{D}$ and $2g_\textrm{D}$ and for high-electric-charge objects of electric charge $20 \leq |z| \leq 100$, for masses between 200 GeV and 4000 GeV. The search improves by approximately a factor of three the previous cross-section limits on the Drell-Yan production of magnetic monopoles and high-electric charge objects. Also, the first ATLAS limits on the photon-fusion pair production mechanism of magnetic monopoles and high-electric-charge objects have been obtained.
Observed 95% CL upper limits on the cross section for all masses and charges of Drell-Yan spin-0 monopoles production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% CL upper limits on the cross section for all masses and charges of Drell-Yan spin-1/2 monopoles production as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
Observed 95% CL upper limits on the cross section for all masses and charges of photon-fusion pair-produced spin-0 monopoles as a function of mass for magnetic charges $|g|=1g_D$ and $|g|=2g_D$.
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber. We report searches for new physics appearing through few-keV-scale electron recoils, using the experiment's first exposure of 60 live days and a fiducial mass of 5.5t. The data are found to be consistent with a background-only hypothesis, and limits are set on models for new physics including solar axion electron coupling, solar neutrino magnetic moment and millicharge, and electron couplings to galactic axion-like particles and hidden photons. Similar limits are set on weakly interacting massive particle (WIMP) dark matter producing signals through ionized atomic states from the Migdal effect.
The SR1 data in the {S1c, log10S2c} space with respect to observed time. Top plot is first half of SR1 containing 178 of the final data set. Bottom plot is second half of SR1 containing 157 events.
Electronic Recoil (ER) detection efficiency evaluated as a function of simulated true ER energy [keVee]. The data contains ER detection efficiency for ROI of study.
The observed 90% C.L upper limit on effective neutrino magnetic moment (\mu_{\nu}[\mu_{B}]) in SR1. The data contains observed upper limit, median sensitivity and 1\sigma and 2\sigma sensitivity range.
A search for quantum black holes in electron+jet and muon+jet invariant mass spectra is performed with 140 fb$^{-1}$ of data collected by the ATLAS detector in proton-proton collisions at $\sqrt{s}$ = 13 TeV at the Large Hadron Collider. The observed invariant mass spectrum of lepton+jet pairs is consistent with Standard Model expectations. Upper limits are set at 95% confidence level on the production cross-sections times branching fractions for quantum black holes decaying into a lepton and a quark in a search region with invariant mass above 2.0 TeV. The resulting quantum black hole lower mass threshold limit is 9.2 TeV in the Arkani-Hamed-Dimopoulos-Dvali model, and 6.8 TeV in the Randall-Sundrum model.
The 95% CL model-independent upper limits on $\sigma \times Br$ for the non-SM signal production with decay into the lepton+jet. The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the lower border of the SR (threshold of SR, Th$_\mathrm{SR}$), above which the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands of expected limits are shown in green and yellow, respectively. The limits are obtained with pseudo-experiments.
The combined 95% CL upper limits on $\sigma \times Br$ as a function of threshold mass, $M_\mathrm{th}$, for QBH production with decay into lepton+jet for ADD-model (extra dimensions n = 6). The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the mass $M_\mathrm{th}$ of the signal where the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands are shown in green and yellow, respectively. The theoretically predicted $\sigma \times Br$ for the QBH production and decay is shown as the solid blue curve with squares.
The combined 95% CL upper limits on $\sigma \times Br$ as a function of threshold mass, $M_\mathrm{th}$, for QBH production with decay into lepton+jet for RS1-model (extra dimensions n = 1). The limits take into account statistical and systematic uncertainties. Circles along the solid red line indicate the mass $M_\mathrm{th}$ of the signal where the observed limit is computed. The expected limits are shown by the dashed line. The $\pm 1\sigma$ and $\pm 2\sigma$ bands are shown in green and yellow, respectively. The theoretically predicted $\sigma \times Br$ for the QBH production and decay is shown as the solid blue curve with squares.
New particles with large masses that decay into hadronically interacting particles are predicted by many models of physics beyond the Standard Model. A search for a massive resonance that decays into pairs of dijet resonances is performed using 140 fb$^{-1}$ of proton$-$proton collisions at $\sqrt{s}=13$ TeV recorded by the ATLAS detector during Run 2 of the Large Hadron Collider. Resonances are searched for in the invariant mass of the tetrajet system, and in the average invariant mass of the pair of dijet systems. A data-driven background estimate is obtained by fitting the tetrajet and dijet invariant mass distributions with a four-parameter dijet function and a search for local excesses from resonant production of dijet pairs is performed. No significant excess of events beyond the Standard Model expectation is observed, and upper limits are set on the production cross-sections of new physics scenarios.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.10 < $\alpha$ < 0.12.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.12 < $\alpha$ < 0.14.
The average tetrajet invariant mass distributions in data, along with the fitted background estimates for 0.14 < $\alpha$ < 0.16.