On 8 K events of the reaction p p π + π − at 7.23 GeV/ c simple selection on angular parameters is performed yielding a sample of events with the typical features of diffraction dissociation. A cross section of 1.22 ± 0.08 mb (in two vertices) and a slope of the t distribution of 12.6 ± 1.0 GeV −2 for − t < 0.1 GeV 2 are obtained for the diffraction fraction dissociation p → p π + π − + c.c. Using an analogous selection procedure, another sample of events is isolated that is characterized by double resonance production. Cross sections for Δ Δ and Δ Δ ′ + c.c. production amount to 1.27 ± 0.09 mb and 0.23 ± 0.07 mb respectively. Diffraction dissociation and double resonance production together make up for 87% of the total cross section for the reaction p p → p p π + π − , which is 3.11 ± 0.13 mb.
No description provided.
EXPONENTIAL FIT TO D(SIG)/DT IN THREE REGIONS OF T. FOR EVENTS WITH M(P PI+) AND M(AP PI-) < 1.4 GEV.
No description provided.
Polarized cross sections for the reaction π − p → η n have been measured at 12 incident momenta between 1171 and 2267 MeV/ c . The data show that the polarization is small in the forward direction and there is a general trend for it to be large and positive near cos θ ∗ = 0.2 . These are the first published results on polarization effects in this channel in the resonance region. An energy-dependent partial-wave analysis has been performed and the couplings and branching fractions for decays of nucleon resonances to this channel are presented.
No description provided.
No description provided.
No description provided.
The polarization in π + p → π + p and K + p → K + p has been measured at 6 and 12 GeV/ c in the four-momentum transfer interval 0.1 ⩽ | t | ⩽ 2.0 (GeV/ c ) 2 by scattering on protons of a polarized deuteron target. Comparison with existing results obtained with polarized proton targets shows good general agreement and no evidence for asymmetry effects due to the presence of the spectator neutron. For K + p elastic scattering polarization the experiment yields improved statistics, especially at 6 GeV/ c
No description provided.
No description provided.
No description provided.
We report the results of an experiment made at the CERN ISR to investigate the possible diret production of single photons in pp collisions at √ s = 53.2 GeV at 90° and in the p t interval 2.3 to 5.7 GeV/ c . The value of the ratio R = n γ / n π 0 is compatible with zero for low p t ⪅ 3 GeV/ c but, in spite of the large error, shows a trend to increase for larger p t .
THIS USES THE SO-CALLED D2L TRIGGER (SEE PAPER).
THIS USES THE SO-CALLED D2MAX TRIGGER (SEE PAPER).
THIS USES THE SO-CALLED D2MAX TRIGGER (SEE PAPER).
This paper summarizes the measurements one+e− annihilation performed by the DASP Collaboration in the energy range between 3.1 and 5.2 GeV. The following topics are covered: total cross section, production and two body decays of the narrow resonances, radiative decays of theJ/ψ and ψ′ resonances and evidence for theX(2.82), ψ′ cascade decays, inclusive η production and evidence for theF meson, semileptonic decays of charmed mesons and properties of the heavy lepton.
THESE DATA ON R WERE PUBLISHED IN R. BRANDELIK ET AL., PL 76B, 361 (1978), THE RECORD OF WHICH HAS TABULATED CROSS SECTIONS WITH AND WITHOUT THE TAU HEAVY LEPTON CONTRIBUTION.
OBSERVATION OF J/PSI RESONANCE.
OBSERVATION OF PSI(3700)0 RESONANCE.
None
.
.
.
We have performed a high-statistics experiment on the reaction π−p→K+K¯0π−n at 8.0 GeV/c. A Dalitz-plot analysis of the K+K¯0π− system finds that the D(1285) is a JPG=1++ state coupling predominantly to a δπ decay channel, while the E(1420) peak consists mostly of a JPG=0−+ wave with a substantial δπ decay mode. There is little evidence of a 1++ resonance at the E mass.
No description provided.
None
CROSS-OVER IS AT -T = 0.17 +- 0.02 GEV**2. DIVIDE BY 20 TO GET D(SIG)/DT IN MB/GEV**2. CORRECTED FOR LOST EVENTS FOR -T < 0.12 GEV**2.
FROM QUADRATIC EXPONENTIAL FIT TO D(SIG)/DT. BOTH STATISTICAL AND SYSTEMATIC ERRORS INCLUDED IN VALUES.
The production of KS, Λ, Λ¯, and γ in π−p collisions at 147 GeV/c is analyzed. Cross sections, rapidity, Feynman-x, and pT2 distributions are presented and compared to charged-particle production. The energy dependence of multiplicities in π−p and pp collisions is shown. A new scaling form for the correlation of neutral- and charged-particle multiplicities is presented for compilations of πp and pp data.
Axis error includes +- 0.0/0.0 contribution (?////ERRORS QUOTED ARE MAINLY STATISTICAL BUT INCLUDE CONTRIBUTIONS FROM ESTIMATES OF CONTAMINATION AND OF THE RELIABILITY OF WEIGHTING SCHEMES10 PCT OF ALAMBDA EVENTS COULD BE GAMMA CONTAMINATION, 0.5 PCT OF KS EVENTS COULD HAVE BEEN MISCLASSIFIED AS GAMMA'S).
Axis error includes +- 0.0/0.0 contribution (?////ERRORS QUOTED ARE MAINLY STATISTICAL BUT INCLUDE CONTRIBUTIONS FROM ESTIMATES OF CONTAMINATION AND OF THE RELIABILITY OF WEIGHTING SCHEMES10 PCT OF ALAMBDA EVENTS COULD BE GAMMA CONTAMINATION, 0.5 PCT OF KS EVENTS COULD HAVE BEEN MISCLASSIFIED AS GAMMA'S).
We have carried out an experimental study of the neutron and proton deep-inelastic electromagnetic structure functions. The structure functions were extracted from electron-proton and electron-deuteron differential cross sections measured in three experiments spanning the angles 6°, 10°, 15°, 18°, 19°, 26°, and 34°. We report primarily on the large-angle (15°-34°) measurements. Neutron cross sections were extracted from the deuteron data using an impulse approximation. Our results are consistent with the hypothesis that the nucleon is composed of pointlike constituents. The variation of the cross section with angle suggests that the hypothetical constituents have spin ½. The data for σnσp, the ratio of the neutron and proton differential cross sections, are in the range 0.25 to 1.0, and are within the limits imposed by the quark model. Detailed studies of the structure functions were made for a range of the scaling variable ω from ω=1.3 to ω=10.0, and for a range of invariant four-momentum transfer Q2 from 1.0 to 20.0 GeV2. These studies indicate that the structure functions approximately scale in the variable ω, although significant deviations from scaling in ω are apparent in the region 1.3<ω<3.3. These deviations from scaling are in the same direction and of similar magnitude for both neutron and proton. The interpretation of the data in terms of various theoretical models is discussed.
No description provided.
No description provided.
No description provided.