Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.
DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).
DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).
No description provided.
Using both charged and neutral components, 2600 multihadronic e + e − annihilation events, recorded at 34 GeV by the CELLO detector at PETRA, have been analysed in a calometric approach. The fraction of energy carried by gamma rays is measured to be f γ = (26.0 ± 0.4 (stat) ± 4.0 (syst)%. The neutral energy flow is seen to follow closely the overall energy flow. From the corrected oblateness distribution, a first order determination of α s is performed. The result is α s = 0.16 ± 0.01 (stat) ± 0.03 (syst).
No description provided.
The ration R = σ (e + e − → hadrons) σ μμ was measured between 12.0 and 36.7 GeV c.m. energy W with a precision of typically ± 5.2%. R is found to be constant with an average R = 4.01 ± 0.03 (stat) ± (syst.) for W ⩾ 14 GeV. Quarks are found to be point-like, the mass parameter describing a possible quark form-factor being larger than 186 GeV. Fits including QCD corrections and a weak neutral-current contribution are presented.
DATA OF RUNPERIOD 1.
DATA OF RUNPERIOD 2.
R MEASURED IN SCANNING MODE.
The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.
No description provided.
Energy correlations have been measured with the MARK II detector at the PEP storage ring (Stanford Linear Accelerator Center) at c.m. energy of 29 GeV and are compared to first-order QCD predictions. Fragmentation processes are significant and limit the precision with which the first-order strong-coupling constant can be determined.
CORRELATION IS THE ENERGY WEIGHTED CROSS SECTION FOR OBSERVING THE ENERGY E1 IN THE SOLID ANGLE DOMEGA1 AND THE ANGLE E2 IN THE SOLID ANGLE DOMEGA2.SUMMED OVER ALL PAIRS OF PARTICLES IN DOMEGA1 AND DOMEGA2 AND ALL EVENTS.
MEASUREMENT OF THE STRONG COUPLING CONSTANT.
We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.
No description provided.
No description provided.
No description provided.
Using the DASP detector at the DESY storage ring DORIS we have continued measuring e + e − annihilations near and on the ϒ(9.46) resonance. From the cross sections for e + e − → μ + μ − and e + e − → hadrons we obtain a μ + μ − branching ratio for the ϒ(9.46) of (2.9 ± 1.3 ± 0.5) %, a leptonic width г ee = (1.35 ± 0.11 ± 0.22) keV and a total width of (47 −15 +37 keV.
VISIBLE HADRONIC CROSS SECTION. PEAK VALUE AT UPSILON IS 10.1 +- 0.7 NB.
No description provided.
Topological distributions of charged and neutral hadrons from the reaction e + e − → multihadrons are studied at √ s of about 30 GeV. An excess of planar events is observed at a rate which cannot be explained by statistical fluctuations in the standard two-jet process. The planar events, mostly consisting of a slim jet on one side and a broader jet on the other, are shown actually to possess three-jet structure by demonstrating that the broader jet itself consists of two collinear jets in its own rest system. Detailed agreement between data and predictions is obtained if the process e + e − →q q ̄ g is taken into account. This strongly suggests gluon bremsstrahlung as the origin of the planar three-jet events. By comparison of the data with the qq̄g-model we obtain a value for the strong coupling constant of α S ( q 2 = 0.17 ± 0.04.
THRUST AND PLANARITY DISTRIBUTIONS. FINAL (BETTER) THRUST DISTRIBUTIONS WITH DETECTOR CORRECTIONS TO BE PUBLISHED LATER.
No description provided.