Energy-integrated reaction cross sections have been measured at energies ranging from 38 to 80 MeV/nucleon for various exotic neutron-rich isotopes of Al, Si, P, S, Cl, Ar, K, Ca, Sc, and Ti stopping in Si. An experimental technique is employed where Si detectors are used for both particle identification and to serve as the target material. The reduced strong absorption radii r02 are deduced and compared with other experimental results. The radius dependence on the neutron number was studied and a trend of increasing reduced radius with neutron excess was found. This behavior is similar to that seen in lighter systems, although less pronounced than found there. The implications of this result on the conjectured existence of neutron halo or skin nuclei is discussed.
No description provided.
No description provided.
No description provided.
Measurements at 18 beam kinetic energies between 1975 and 2795 MeV and at 795 MeV are reported for the pp elastic-scattering single spin parameter Aooon=Aoono=AN=P. The c.m. angular range is typically 60–100°. These results are compared to previous data from Saturne II and other accelerators. A search for energy-dependent structure at fixed c.m. angles is performed, but no rapid changes are observed.
Measured values of the P P analysing power at kinetic energy 0.795 GeV. Therelative and additive systematic errors are +- 0.018 and 0.0007.
Measured values of the P P analysing power at kinetic energy 1.975 GeV. Therelative and additive systematic errors are +- 0.045 and 0.002.
Measured values of the P P analysing power at kinetic energy 2.035 GeV fromrun I. The relative and additive systematic errors are +- 0.044 and 0.002.
Production cross sections of K$^+$ and K$^-$ mesons have been measured in C+C collisions at beam energies per nucleon below and near the nucleon-nucleon threshold. At a given beam energy, the spectral slopes of the K$^-$ mesons are significantly steeper than the ones of the K$^+$ mesons. The excitation functions for K$^+$ and K$^-$ mesons nearly coincide when correcting for the threshold energy. In contrast, the K$^+$ yield exceeds the K$^-$ yield by a factor of about 100 in proton-proton collisions at beam energies near the respective nucleon-nucleon thresholds.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
D3(SIG)/D3(p) is fitted to exp(-E(K)/SLOPE). The quoted erros on the cross sections include systematic effects.
Experimental results are presented for the pp elastic-scattering single spin observable Aoono=Aooon=AN=P, or the analyzing power, at 19 beam kinetic energies between 1795 and 2235 MeV. The typical c.m. angular range is 60–100°. The measurements were performed at Saturne II with a vertically polarized beam and target (transverse to the beam direction and scattering plane), a magnetic spectrometer and a recoil detector, both instrumented with multiwire proportional chambers, and beam polarimeters.
Measurement values of the P P analysing power at kinetic energy 1.795 GeV. The relative and additive systematic errors are +- 0.106 and 0.003.
Measurement values of the P P analysing power at kinetic energy 1.845 GeV. The relative and additive systematic errors are +- 0.068 and 0.001.
Measurement values of the P P analysing power at kinetic energy 1.935 GeV. The relative and additive systematic errors are +- 0.091 and 0.003.
We have measured the absolute unpolarized cross sections for photon electro-production off the proton ep → epγ with the Three-Spectrometer-Setup at MAMI at a momentum transfer q=600 MeV/c and a virtual photon polarization ɛ=0.62. The momentum q ′ of the outgoing real photon range from 33 to 111 MeV/c. We extracted two combinations of the recently introduced generalized polarizabilities [1,2].
No description provided.
The results of a study of the annihilation reactions n p → θπ + and n p → ωπ + are reported; the data were collected by the OBELIX apparatus, with antineutrons annihilating in flight (momenta from ∼ 50 MeV/ c to 405 MeV/ c ). Annihilation frequencies and annihilation cross sections have been deduced, for both channels, as a function of antineutron momentum. From the cross section ratio, a substantial deviation from OZI rule expectations is observed. An s s quark content in the nucleon offers a fairly plausible explanation for such an effect.
No description provided.
No description provided.
Differential cross sections for Compton scattering from the free proton at Θ γ ′ lab =130.7° in the energy region from 200 MeV to 410 MeV and for quasi-free Compton scattering from the proton bound in the deuteron at Θ γ ′ lab =148.8° in the energy region from 200 MeV to 290 MeV have been measured. The free proton data are in agreement with dispersion-theory predictions based on standard parameters. The difference of the proton polarizabilities has been extracted from the quasi-free data. Our result, α ̄ − β ̄ =[9.1±1.7( stat+syst )±1.2( mod )]×10 −4 fm 3 , is in reasonable agreement with the world average of the free proton data if the backward spin polarizability γ π is taken to be −37.6×10 −4 fm 4 as predicted by dispersion theory in agreement with many theoretical calculations. This implies that quasi-free Compton scattering may also be used to determine the electromagnetic polarizabilities of the neutron. No indication has been found of a recently suggested new contribution to γ π .
No description provided.
DO has measured the inclusive production cross section of W and Z bosons in a sample of 13 pb$^{-1}$ of data collected at the Fermilab Tevatron. The cross sections, multiplied by their leptonic branching fractions, for production in pbar-p collisions at sqrt{s}=1.8 TeV are sigma_W*B(W->e nu) = 2.36+-0.02+-0.08+-0.13 nb, sigma_W*B(W->mu nu) = 2.09+-0.06+-0.22+-0.11 nb, sigma_Z*B(Z->e+ e-) = 0.218+-0.008+-0.008+-0.012 nb, and sigma_Z*B(Z->mu+ mu-) = 0.178+-0.022+-0.021+-0.009 nb, where the first uncertainty is statistical and the second systematic; the third reflects the uncertainty in the integrated luminosity. For the combined electron and muon analyses, we find sigma_W*B(W->l mu)/sigma_Z*B(Z->l+ l-) = 10.90+-0.52. Assuming standard model couplings, we use this result to determine the width of the W boson, and obtain Gamma(W) = 2.044+-0.097 GeV.
No description provided.
Combined electron and muon analysis.
We present a measurement of tbar-t production using multijet final states in pbar-p collisions at a center-of-mass energy of 1.8 TeV, with an integrated luminosity of 110.3 pb(-1). The analysis has been optimized using neural networks to achieve the smallest expected fractional uncertainty on the tbar-t production cross section, and yields a cross section of 7.1 +/- 2.8(stat.) +/- 1.5(syst.) pb, assuming a top quark mass of 172.1 GeV/c^(2). Combining this result with previous D0 measurements, where one or both of the W bosons decay leptonically, gives a tbar-t production cross section of 5.9 +/- 1.2(stat) +/- 1.1(syst) pb.
No description provided.
The muon anomalous magnetic moment has been measured in a new experiment at Brookhaven. Polarized muons were stored in a superferric ring, and the angular frequency difference, ωa, between the spin precession and orbital frequencies was determined by measuring the time distribution of high-energy decay positrons. The ratio R of ωa to the Larmor precession frequency of free protons, ωp, in the storage-ring magnetic field was measured. We find R=3.707220(48)×10−3. With μμ/μp=3.18334547(47) this gives aμ+=1165925(15)×10−9 ( ±13ppm), in good agreement with the previous CERN measurements for μ+ and μ− and of approximately the same precision.
The anomalous g value is related to the gyromagnetic ratio by MOM(NAME=ANOMALOUS MAGNETIC) = (G-2)/2. The beam momentum spread is about 1 PCT.