Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at $\mathbf{\sqrt{s}=}$ 0.9, 7 and 8 TeV

The ALICE collaboration Acharya, S. ; Adamová, D. ; Adolfsson, J. ; et al.
Eur.Phys.J.C 77 (2017) 852, 2017.
Inspire Record 1614477 DOI 10.17182/hepdata.78802

We present the charged-particle multiplicity distributions over a wide pseudorapidity range ($-3.4<\eta<5.0$) for pp collisions at $\sqrt{s}=$ 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP-Glasma calculations.

90 data tables

Multiplicity distribution in the pseudorapidity region -2.0 to 2.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -2.4 to 2.4 for NSD collisions at a centre-of-mass energy of 900 GeV.

Multiplicity distribution in the pseudorapidity region -3.0 to 3.0 for NSD collisions at a centre-of-mass energy of 900 GeV.

More…

Energy dependence of $\phi$ meson production at forward rapidity in pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 81 (2021) 772, 2021.
Inspire Record 1861688 DOI 10.17182/hepdata.110876

The production of $\phi$ mesons has been studied in pp collisions at LHC energies with the ALICE detector via the dimuon decay channel in the rapidity region $2.5 < y < 4$. Measurements of the differential cross section ${\rm d}^2\sigma/{\rm d}y {\rm d}p_{\rm T}$ are presented as a function of the transverse momentum ($p_{\rm T}$) at the center-of-mass energies $\sqrt{s}=5.02$, 8 and 13 TeV and compared with the ALICE results at midrapidity. The differential cross sections at $\sqrt{s}=5.02$ and 13 TeV are also studied in several rapidity intervals as a function of $p_{\rm T}$, and as a function of rapidity in three $p_{\rm T}$ intervals. A hardening of the $p_{\rm T}$-differential cross section with the collision energy is observed, while, for a given energy, $p_{\rm T}$ spectra soften with increasing rapidity and, conversely, rapidity distributions get slightly narrower at increasing $p_{\rm T}$. The new results, complementing the published measurements at $\sqrt{s}=2.76$ and 7 TeV, allow one to establish the energy dependence of $\phi$ meson production and to compare the measured cross sections with phenomenological models. None of the considered models manages to describe the evolution of the cross section with $p_{\rm T}$ and rapidity at all the energies.

19 data tables

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=5.02$ TeV at forward rapidity in pp collisions.

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=8$ TeV at forward rapidity in pp collisions.

$\phi$ meson production cross section $\mathrm{d}^2\sigma/(\mathrm{d}y\mathrm{d}p_\mathrm{T})$ as a function of $p_\mathrm{T}$ at $\sqrt{s}=13$ TeV at forward rapidity in pp collisions.

More…

Measurement of very forward energy and particle production at midrapidity in pp and p-Pb collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 08 (2022) 086, 2022.
Inspire Record 1890061 DOI 10.17182/hepdata.131521

The energy deposited at very forward rapidities (very forward energy) is a powerful tool for characterising proton fragmentation in pp and p$-$Pb collisions. The correlation of very forward energy with particle production at midrapidity provides direct insights into the initial stages and the subsequent evolution of the collision. Furthermore, the correlation with the production of particles with large transverse momenta at midrapidity provides information complementary to the measurements of the underlying event, which are usually interpreted in the framework of models implementing centrality-dependent multiple parton interactions. Results about very forward energy, measured by the ALICE zero degree calorimeters (ZDCs), and its dependence on the activity measured at midrapidity in pp collisions at $\sqrt{s}=13$ TeV and in p$-$Pb collisions at $\sqrt{s_{\rm{NN}}}=8.16$ TeV are discussed. The measurements performed in pp collisions are compared with the expectations of three hadronic interaction event generators: PYTHIA 6 (Perugia 2011 tune), PYTHIA 8 (Monash tune), and EPOS LHC. These results provide new constraints on the validity of models in describing the beam remnants at very forward rapidities, where perturbative QCD cannot be used.

16 data tables

Average signal on A-side vs. C-side ZN in pp collisions at 13 TeV

Average signal on A-side vs. C-side ZP in pp collisions at 13 TeV

Pb-remnant side ZN signal normalized to MB value vs. ZN centrality percentile in p-Pb collisions at 5.02 TeV

More…

Strange hadron collectivity in pPb and PbPb collisions

The CMS collaboration Tumasyan, Armen ; Adam, Wolfgang ; Andrejkovic, Janik Walter ; et al.
JHEP 05 (2023) 007, 2023.
Inspire Record 2075415 DOI 10.17182/hepdata.115425

The collective behavior of K$^0_\mathrm{S}$ and $\Lambda/\bar{\Lambda}$ strange hadrons is studied by measuring the elliptic azimuthal anisotropy ($v_2$) using the scalar-product and multiparticle correlation methods. Proton-lead (pPb) collisions at a nucleon-nucleon center-of-mass energy $\sqrt{s_\mathrm{NN}}$ = 8.16 TeV and lead-lead (PbPb) collisions at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV collected by the CMS experiment at the LHC are investigated. Nonflow effects in the pPb collisions are studied by using a subevent cumulant analysis and by excluding events where a jet with transverse momentum greater than 20\GeV is present. The strange hadron $v_2$ values extracted in \pPb collisions via the four- and six-particle correlation method are found to be nearly identical, suggesting the collective behavior. Comparisons of the pPb and PbPb results for both strange hadrons and charged particles illustrate how event-by-event flow fluctuations depend on the system size.

55 data tables

The elliptic flow $v_2\{4\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

The elliptic flow $v_2\{6\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

The elliptic flow $v_2\{8\}$ for charged hadron as a function of $p_T$ in PbPb collision at 5.02 TeV.

More…

Nuclear modification factor of light neutral-meson spectra up to high transverse momentum in p-Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 827 (2022) 136943, 2022.
Inspire Record 1856529 DOI 10.17182/hepdata.128138

Neutral pion ($\pi^{0}$) and $\eta$ meson production cross sections were measured up to unprecedentedly high transverse momenta ($p_{\rm T}$) in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV. The mesons were reconstructed via their two-photon decay channel in the rapidity interval $-1.3< y <0.3$ in the ranges of $0.4<p_{\rm T}<200$ GeV/$c$ and $1.0<p_{\rm T}<50$ GeV/$c$, respectively. The respective nuclear modification factor ($R_{\rm pPb}$) is presented for $p_{\rm T}$ up to of 200 and 30 GeV/$c$, where the former was achieved by extending the $\pi^{0}$ measurement in pp collisions at $\sqrt{s}$ = 8 TeV using the merged cluster technique. The values of $R_{\rm pPb}$ are below unity for $p_{\rm T}<10$ GeV/$c$, while they are consistent with unity for $p_{\rm T}>10$ GeV/$c$, leaving essentially no room for final state energy loss. The new data provide strong constraints for nuclear parton distribution and fragmentation functions over a broad kinematic range and are compared to model predictions as well as previous results at $\sqrt{s_{\rm NN}}$ = 5.02 TeV.

8 data tables

Invariant differential cross section of PI0 produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.

Invariant differential cross section of PI0 produced in inelastic pp collisions at a centre-of-mass energy of 8 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 2.6% is not included in the systematic error.

Invariant differential cross section of ETA produced in inelastic p-Pb collisions at a centre-of-mass energy per nucleon of 8.16 TeV, the uncertainty of $\sigma_\mbox{MB}$ of 1.9% is not included in the systematic error.

More…

Inclusive quarkonium production at forward rapidity in pp collisions at $\sqrt{s}=8$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 76 (2016) 184, 2016.
Inspire Record 1395099 DOI 10.17182/hepdata.72936

We report on the inclusive production cross sections of J/$\psi$, $\psi$(2S), $\Upsilon$(1S), $\Upsilon$(2S) and $\Upsilon$(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy $\sqrt{s}=8$ TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.28 pb$^{-1}$. Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum $p_{\rm T}$ and rapidity $y$, over the $p_{\rm T}$ ranges $0<p_{\rm T}<20$ GeV/$c$ for J/$\psi$, $0<p_{\rm T}<12$ GeV/$c$ for all other resonances, and for $2.5<y<4$. The cross sections, integrated over $p_{\rm T}$ and $y$, and assuming unpolarized quarkonia, are $\sigma_{{\rm J}/\psi} = 8.98\pm0.04\pm0.82$ $\mu$b, $\sigma_{\psi{\rm (2S)}} = 1.23\pm0.08\pm0.22$ $\mu$b, $\sigma_{\Upsilon{\rm(1S)}} = 71\pm6\pm7$ nb, $\sigma_{\Upsilon{\rm(2S)}} = 26\pm5\pm4$ nb and $\sigma_{\Upsilon{\rm(3S)}} = 9\pm4\pm1$ nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most $1.4\sigma$, with measurements performed by the LHCb collaboration in the same rapidity range.

17 data tables

Differential production cross sections of J/$\psi$ as a function of $p_{\rm T}$.

Differential production cross sections of J/$\psi$ as a function of rapidity.

integrated production cross section of J/$\psi$.

More…

Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at $\mathbf{\sqrt{\textit s}}$ = 13 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Lett.B 753 (2016) 319-329, 2016.
Inspire Record 1395253 DOI 10.17182/hepdata.70847

The pseudorapidity ($\eta$) and transverse-momentum ($p_{\rm T}$) distributions of charged particles produced in proton-proton collisions are measured at the centre-of-mass energy $\sqrt{s}$ = 13 TeV. The pseudorapidity distribution in $|\eta|<$ 1.8 is reported for inelastic events and for events with at least one charged particle in $|\eta|<$ 1. The pseudorapidity density of charged particles produced in the pseudorapidity region $|\eta|<$ 0.5 is 5.31 $\pm$ 0.18 and 6.46 $\pm$ 0.19 for the two event classes, respectively. The transverse-momentum distribution of charged particles is measured in the range 0.15 $<$ $p_{\rm T}$ $<$ 20 GeV/c and $|\eta|<$ 0.8 for events with at least one charged particle in $|\eta|<$ 1. The correlation between transverse momentum and particle multiplicity is also investigated by studying the evolution of the spectra with event multiplicity. The results are compared with calculations from PYTHIA and EPOS Monte Carlo generators.

4 data tables

Average pseudorapidity density of charged particles as a function of eta produced in pp collisions at sqrt(s) = 13 TeV. The results are shown in the normalisation classes INEL and INEL>0. The uncertainties are the quadratic sum of statistical and systematic contributions.

Invariant charged-particle yield as a function of pT normalised to INEL>0 events.

Ratio of transverse-momentum spectra in INEL>0 events at $\sqrt{s}$ = 13 and 7 TeV.

More…

Charged-particle multiplicities in proton-proton collisions at $\sqrt{s}$ = 0.9 to 8 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Eur.Phys.J.C 77 (2017) 33, 2017.
Inspire Record 1394854 DOI 10.17182/hepdata.77011

A detailed study of pseudorapidity densities and multiplicity distributions of primary charged particles produced in proton-proton collisions, at $\sqrt{s} =$ 0.9, 2.36, 2.76, 7 and 8 TeV, in the pseudorapidity range $|\eta|<2$, was carried out using the ALICE detector. Measurements were obtained for three event classes: inelastic, non-single diffractive and events with at least one charged particle in the pseudorapidity interval $|\eta|<1$. The use of an improved track-counting algorithm combined with ALICE's measurements of diffractive processes allows a higher precision compared to our previous publications. A KNO scaling study was performed in the pseudorapidity intervals $|\eta|<$ 0.5, 1.0 and 1.5. The data are compared to other experimental results and to models as implemented in Monte Carlo event generators PHOJET and recent tunes of PYTHIA6, PYTHIA8 and EPOS.

75 data tables

Measured pseudorapidity dependence of $dN/d\eta$ for INEL collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of $dN/d\eta$ for NSD collisions at a centre-of-mass energy of 900 GeV.

Measured pseudorapidity dependence of $dN/d\eta$ for INEL>0 collisions at a centre-of-mass energy of 900 GeV.

More…

Forward rapidity J/$\psi$ production as a function of charged-particle multiplicity in pp collisions at $\sqrt{s} =$ 5.02 and 13 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
JHEP 06 (2022) 015, 2022.
Inspire Record 1992719 DOI 10.17182/hepdata.129601

The production of J/$\psi$ is measured as a function of charged-particle multiplicity at forward rapidity in proton$-$proton (pp) collisions at center-of-mass energies $\sqrt{s} =$ 5.02 and 13 TeV. The J/$\psi$ mesons are reconstructed via their decay into dimuons in the rapidity interval (2.5 $< y <$ 4.0), whereas the charged-particle multiplicity density (${\rm d}N_{\rm{ch}}/{\rm d}\eta$) is measured at midrapidity $(|\eta| < 1)$. The production rate as a function of multiplicity is reported as the ratio of the yield in a given multiplicity interval to the multiplicity-integrated one. This observable shows a linear increase with charged-particle multiplicity normalized to the corresponding average value for inelastic events (${{\rm d}N_{\rm ch}/{\rm d}\eta}/{\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle}$), at both the colliding energies. Measurements are compared with available ALICE results at midrapidity and theoretical model calculations. First measurement of the mean transverse momentum ($\langle p_{\mathrm{T}}\rangle$) of J/$\psi$ in pp collisions exhibits an increasing trend as a function of ${{\rm d}N_{\rm ch}/{\rm d}\eta}/{\langle {\rm d}N_{\rm ch}/{\rm d}\eta \rangle}$ showing a saturation towards high charged-particle multiplicities.

4 data tables
More…

$\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ production in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
CERN-EP-2021-200, 2021.
Inspire Record 1946970 DOI 10.17182/hepdata.136309

The production of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonances has been measured in p-Pb collisions at $\sqrt{s_{\rm NN}}$ = 8.16 TeV using the ALICE detector. Resonances are reconstructed via their hadronic decay channels in the rapidity interval $-$0.5 $<$$y$$<$ 0 and the transverse momentum spectra are measured for various multiplicity classes up to $p_{\rm T}$ = 20 GeV/$c$ for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $p_{\rm T}$ = 16 GeV/$c$ for $\mathrm{\phi(1020)}$. The $p_{\rm T}$ -integrated yields and mean transverse momenta are reported and compared with previous results in pp, p-Pb and Pb-Pb collisions. The $x_{\mathrm{T}}$ scaling for $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ resonance production is newly tested in p-Pb collisions and found to hold in the high-$p_{\rm T}$ region at LHC energies. The nuclear modification factors ($R_{\rm pPb}$) as a function of $p_{\rm T}$ for $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ at $\sqrt{s_{NN}}$ = 8.16 TeV are presented along with the new $R_{\rm pPb}$ measurements of $\mathrm{K}^{*0}$, $\mathrm{\phi}$ , $\Xi$, and $\Omega$ at $\sqrt{s_{\rm NN}}$ = 5.02 TeV. At intermediate $p_{\rm T}$ (2-8 GeV/$c$), $R_{\rm pPb}$ of $\Xi$, $\Omega$ show a Cronin-like enhancement, while $\mathrm{K}^{*0}$ and $\mathrm{\phi}$ show no or little nuclear modification. At high $p_{\rm T}$ ($>$ 8 GeV/$c$), the $R_{\rm pPb}$ values of all hadrons are consistent with unity within uncertainties. The $R_{\rm pPb}$ of $\mathrm{K}^{*}(\mathrm{892})^{0}$ and $\mathrm{\phi(1020)}$ at $\sqrt{s_{\rm NN}}$ = 8.16 and 5.02 TeV show no significant energy dependence.

22 data tables

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (NSD).

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (Multiplicity class 0-5%).

$p_{\mathrm T}$-differential yield of $\frac{\mathrm{K^{*0}} + \overline{\mathrm{K^{*0}}}}{2}$ in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}~=~$8.16 TeV (Multiplicity class 5-10%).

More…