Results on the elastic K − π − scattering have been obtained from a study of the K − π − system in 15 000 events of the type K − p→K − π − p π + at a K − beam momentum of 4.25 GeV/ c . The on-mass-shell values of the spherical harmonic moments of the K − π − scattering angular distribution and the K − π − elastic cross section have been obtained by extrapolation to the pion pole. From these values we determined the s- and p-wave phase shifts δ 0 3 and δ 1 3 as a function of the effective mass of the K − π − system between threshold and 1.25 GeV/ c 2 . The value of | δ 0 3 | is smaller than 17° for all mass values and the existence of a p-wave cannot be neglected. At m K − π − = 1.18 GeV/ c 2 there are two solutions for the phase shifts. On the average, the cross section of the K − π − elastic scattering over the region of the effective mass considered amounts to approximately 2.5 mb.
The errors are statistical.
None
No description provided.
In this note we report the results obtained in a single-photoproduction experiment on neutrons in deuterium, with an experimental apparatus made of scintillation counters, spark chambers and a magnetic spectrometer; the explored energy region is one around the second resonance, that is (500÷900) MeV indicent γ-ray energy. We briefly describe the present situation of the phenomenological analysis of the single photoproduction in the second resonance region and compare the results of an analysis made by us with the results obtained by other authors; in particular the e.m. coupling of theP11 isobaric state found by us is large, in accordance with the results of some other authors.
No description provided.
We have determined the cross section for γγ→π+π+π−π− in a way free of assumptions about the relative contributions fromρ0ρ0,ρ02π and 4π (uncorrelated phase space). We find a sharp onset above threshold and a rather high cross section of about 200 nb aroundWγγ=1.5 GeV which consists to about 40% ofρ0ρ0 production with sizeable contributions fromρ02π and 4π (PS). The total cross section as well as theρ0ρ0 content fall rather fast at higher c.m. energies. Attempts to explain this behaviour in terms of production of known resonances are not successful so far. The angular distributions do not show any significant structure pointing to resonance formation in the 4π-system. Only theρ0-meson is observed in the moment analysis. The decay distributions of theρ0 for forward produced rhos are fairly consistent with helicity conservation of the produced rhos in accordance with the VDM picture.
No description provided.
RESULTS OF DECOMPOSITION OF THE CROSS SECTION INTO RHO RHO, RHO 2PI, AND 4PI(PHASE SPACE) USING TWO WIDE W BINS. SEE TEXT OF PAPER FOR DISCUSSION OF FITS.
RESULTS OF DECOMPOSITION OF THE CROSS SECTION INTO THE RHO RHO, RHO PI, AND 4PI (PHASE SPACE) USING SMALL W BINS. SEE TEXT OF PAPER FOR DISCUSSION OF FITS.
In the reaction γγ→KS0KS0 resonance production of thef2− is observed. For the radiative with\(\Gamma _{\gamma \gamma } .B(f'_2\to K\bar K) = 0.11_{ - 0.02}^{ + 0.03}\pm 0.02keV\) is found. The small number of events in thef2,a2 mass region is consistent with the assumption of destructivef2−a2 interference. From the mass distribution we determine the relative phases between the tensor mesons. Upper limits on the radiative widths of the glueball candidatesf2(1720) andX (2220) are derived.
Only bins containing events are included, all others are zero.. Untagged plus single events.. Data read from graph.
Only bins containing events are included, all others are zero.. Untagged events.. Data read from graph.
Corrected for the angular distribution, which is assumed to be sin(theta)**4. Additional systematic error decreasing from 20% in the lowest mass bins to 15% for W > 1.5 GeV.. Data read from graph.
Exclusive rho^+ rho^- production in two-photon collisions involving a single highly-virtual photon is studied with data collected at LEP at centre-of-mass energies 89 GeV < \sqrt{s} < 209 GeV with a total integrated luminosity of 854.7 pb^-1. The cross section of the process gamma gamma^* -> rho^+ rho^- is determined as a function of the photon virtuality, Q^2, and the two-photon centre-of-mass energy, W_gg, in the kinematic region: 1.2 GeV^2 < Q^2 < 30 GeV^2 and 1.1 GeV < W_gg < 3 GeV. The \rho^+\rho^- production cross section is found to be of the same magnitude as the cross section of the process gamma gamma^* -> rho^0 rho^0, measured in the same kinematic region by L3, and to have similar W_gg and Q^2 dependences.
Cross sections for the reaction E+ E- --> E+ E- RHO+ RHO-. The differentialcross sections are corrected to the centre of each bin.
Cross sections for the two photon production of RHO+ RHO-.
Differential cross section for the process E+ E- --> E+ E- (RHO+ PI- PI0 + RHO+ RHO- PI0 PI0) corrected to bin centre.
The reactions gamma gamma -> pi^+pi^-pi^+pi^- and gamma gamma -> pi^+pi^0pi^-pi^0 are studied with the L3 detector at LEP in a data sample collected at centre-of-mass energies from 161GeV to 209GeV with a total integrated luminosity of 698/pb. A spin-parity-helicity analysis of the rho^0 rho^0 and rho^+ rho^- systems for two-photon centre-of-mass energies between 1GeV and 3GeV shows the dominance of the spin-parity state 2+ with helicity 2. The contribution of 0+ and 0- spin-parity states is also observed, whereas contributions of 2- states and of a state with spin-parity 2+ and zero helicity are found to be negligible.
Cross section for 4PI and (RHO0 RHO0) production.
Cross section for 4PI and (RHO+ RHO-) production.
Spin parity analysis fits for RHO0 RHO0.
The cross section for exclusive π+ electroproduction on the proton has been measured near threshold for the first time at two different values of the virtual photon polarization (ɛ∼0.2 and ɛ∼0.7). Using the low energy theorem for this reaction we deduce the axial and pseudoscalar weak form factors GA and GP at ‖t‖=0.073, 0.139, and 0.179 (GeV/c)2. The slope of GA agrees with the value obtained in neutrino experiments. GP satisfies the pion pole dominance hypothesis, which is thus verified for the first time in this range of transfer.
No description provided.
No description provided.
No description provided.
The production of thef0 in two photon collisions, with the subsequent decayf0→π+π− has been observed in the CELLO detector at PETRA. Thef0 peak was found to lie on a dipion continuum and to be shifted downwards in mass by ≃50 MeV/c2. The ππ mass spectrum from 0.8 to 1.5 GeV/c2 was well fitted by the model of Mennessier using only a unitarised Born amplitude and helicity 2f0 amplitude. The previously observed mass shift and distortion of thef0 peak are explained by strong interference between the Born andf0 amplitudes. The only free parameter in the fit of the data to the model is the radiative widthΓγγ(f0). It was found that:Γγγ(f0)=2.5±0.1±0.5 keV where the first (second) quoted errors are statistical (systematic).
Data read from graph.
Data read from graph.
Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q**2 = 1.0 GeV**2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma* p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma_T+epsilon*sigma_L, sigma_TL, and sigma_TT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.975.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.925.
Cross section SIG(T) + EPSILON*SIG(L) for COS(THETA*) = -0.875.