Measurements of the proton and deuteron spin structure functions g1 and g2.

The E143 collaboration Abe, K. ; Akagi, T. ; Anthony, P.L. ; et al.
Phys.Rev.D 58 (1998) 112003, 1998.
Inspire Record 467140 DOI 10.17182/hepdata.22265

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2 > 1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.

33 data tables

Averaged A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

Detailed A1(P) for the DIS (W**2 > 4 GeV) region. Additional normalization uncertainty 3.7%.

More…

Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$

The COMPASS collaboration Adolph, C. ; Alekseev, M.G. ; Alexakhin, V.Yu. ; et al.
Eur.Phys.J.C 73 (2013) 2531, 2013.
Inspire Record 1236358 DOI 10.17182/hepdata.61432

Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\langle p_T^2 \rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\langle p_T^2 \rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\langle k_{\perp}^2 \rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.

48 data tables

PT dependences of the differential multiplicities for 0.0045 < x_Bjorken < 0.0060 and 1.00 < Q^2 < 1.25 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.00 < Q^2 < 1.30 GeV^2 for Positive hadrons.

PT dependences of the differential multiplicities for 0.0060 < x_Bjorken < 0.0080 and 1.30 < Q^2 < 1.70 GeV^2 for Positive hadrons.

More…

Study of $e^+ e^- \to \pi^+ \pi^- J/\psi$ and Observation of a Charged Charmonium-like State at Belle

The Belle collaboration Liu, Z.Q. ; Shen, C.P. ; Yuan, C.Z. ; et al.
Phys.Rev.Lett. 110 (2013) 252002, 2013.
Inspire Record 1225975 DOI 10.17182/hepdata.61431

The cross section for $e^+ e^- \to \pi^+ \pi^- J/\psi$ between 3.8 GeV and 5.5 GeV is measured with a 967 fb$^{-1}$ data sample collected by the Belle detector at or near the $\Upsilon(nS)$ ($n = 1,\ 2,\ ...,\ 5$) resonances. The Y(4260) state is observed, and its resonance parameters are determined. In addition, an excess of $\pi^+ \pi^- J/\psi$ production around 4 GeV is observed. This feature can be described by a Breit-Wigner parameterization with properties that are consistent with the Y(4008) state that was previously reported by Belle. In a study of $Y(4260) \to \pi^+ \pi^- J/\psi$ decays, a structure is observed in the $M(\pi^\pm\jpsi)$ mass spectrum with $5.2\sigma$ significance, with mass $M=(3894.5\pm 6.6\pm 4.5) {\rm MeV}/c^2$ and width $\Gamma=(63\pm 24\pm 26)$ MeV/$c^{2}$, where the errors are statistical and systematic, respectively. This structure can be interpreted as a new charged charmonium-like state.

1 data table

Measured cross section with statistical errors only.


Exclusive $\rho^0$ Meson Photoproduction with a Leading Neutron at HERA

The H1 collaboration Andreev, V. ; Baghdasaryan, A. ; Begzsuren, K. ; et al.
Eur.Phys.J.C 76 (2016) 41, 2016.
Inspire Record 1387751 DOI 10.17182/hepdata.74219

A first measurement is presented of exclusive photoproduction of $\rho^0$ mesons associated with leading neutrons at HERA. The data were taken with the H1 detector in the years $2006$ and $2007$ at a centre-of-mass energy of $\sqrt{s}=319$ GeV and correspond to an integrated luminosity of $1.16$ pb$^{-1}$. The $\rho^0$ mesons with transverse momenta $p_T<1$ GeV are reconstructed from their decays to charged pions, while leading neutrons carrying a large fraction of the incoming proton momentum, $x_L>0.35$, are detected in the Forward Neutron Calorimeter. The phase space of the measurement is defined by the photon virtuality $Q^2 < 2$ GeV$^2$, the total energy of the photon-proton system $20 < W_{\gamma p} < 100$ GeV and the polar angle of the leading neutron $\theta_n < 0.75$ mrad. The cross section of the reaction $\gamma p \to \rho^0 n \pi^+$ is measured as a function of several variables. The data are interpreted in terms of a double peripheral process, involving pion exchange at the proton vertex followed by elastic photoproduction of a $\rho^0$ meson on the virtual pion. In the framework of one-pion-exchange dominance the elastic cross section of photon-pion scattering, $\sigma^{\rm el}(\gamma\pi^+ \to \rho^0\pi^+)$, is extracted. The value of this cross section indicates significant absorptive corrections for the exclusive reaction $\gamma p\to\rho^0 n \pi^+$.

11 data tables

The $\gamma p$ cross section integrated in the domain $0.35 < x_L < 0.95$ and $-t^\prime < 1$~GeV$^2$ and averaged over the energy range $20 < W_{\gamma p} < 100$ GeV for two intervals of leading neutron transverse momentum.

Differential photoproduction cross sections ${\rm d}\sigma_{\gamma p}/{\rm d}x_L$ for the exclusive process $\gamma p \to \rho^0 n \pi^+$ in two regions of neutron transverse momentum and $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.

Double differential photoproduction cross sections ${\rm d^2}\sigma_{\gamma p}/{\rm d}x_L{\rm d}p_{T,n}^2$ in the range $20 < W_{\gamma p} < 100$ GeV. The statistical, uncorrelated and correlated systematic uncertainties, $\delta_{stat}$, $\delta_{sys}^{unc}$ and $\delta_{sys}^{cor}$ respectively, are given, which does not include the global normalisation error of $4.4\%$.

More…

Measurement of the $\bar{B} \rightarrow X_s \gamma$ Branching Fraction with a Sum of Exclusive Decays

The Belle collaboration Saito, T. ; Ishikawa, A. ; Yamamoto, H. ; et al.
Phys.Rev.D 91 (2015) 052004, 2015.
Inspire Record 1330289 DOI 10.17182/hepdata.72902

We use 772$\times 10^6$ $B \bar{B}$ meson pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector to measure the branching fraction for $\bar{B} \rightarrow X_s \gamma$. Our measurement uses a sum-of-exclusives approach in which 38 of the hadronic final states with strangeness equal to $+1$, denoted by $X_s$, are reconstructed. The inclusive branching fraction for $M_{X_s}<$ 2.8 GeV/$c^2$, which corresponds to a minimum photon energy of 1.9 GeV, is measured to be ${\cal B}(\bar{B} \rightarrow X_s \gamma)=(3.51\pm0.17\pm0.33)\times10^{-4}$, where the first uncertainty is statistical and the second is systematic.

1 data table

The yields and partial branching fraction in each $M_{X_s}$ mass bin for the decay $\bar{B} \rightarrow X_s \gamma$, where $\bar{B}$ is either $\bar{B}^0$ or $B^-$, $X_s$ denotes all the hadron combinations that carry strangeness of +1, and charge conjugation is implied.


The Spin Structure Function $g_1^{\rm p}$ of the Proton and a Test of the Bjorken Sum Rule

The COMPASS collaboration Adolph, C. ; Akhunzyanov, R. ; Alexeev, M.G. ; et al.
Phys.Lett.B 753 (2016) 18-28, 2016.
Inspire Record 1357198 DOI 10.17182/hepdata.72819

New results for the double spin asymmetry $A_1^{\rm p}$ and the proton longitudinal spin structure function $g_1^{\rm p}$ are presented. They were obtained by the COMPASS collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH$_3$ target. The data were collected in 2011 and complement those recorded in 2007 at 160\,GeV, in particular at lower values of $x$. They improve the statistical precision of $g_1^{\rm p}(x)$ by about a factor of two in the region $x\lesssim 0.02$. A next-to-leading order QCD fit to the $g_1$ world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, $\Delta \Sigma$ ranging from 0.26 to 0.36, and to a re-evaluation of the first moment of $g_1^{\rm p}$. The uncertainty of $\Delta \Sigma$ is mostly due to the large uncertainty in the present determinations of the gluon helicity distribution. A new evaluation of the Bjorken sum rule based on the COMPASS results for the non-singlet structure function $g_1^{\rm NS}(x,Q^2)$ yields as ratio of the axial and vector coupling constants $|g_{\rm A}/g_{\rm V}| = 1.22 \pm 0.05~({\rm stat.}) \pm 0.10~({\rm syst.})$, which validates the sum rule to an accuracy of about 9\%.

3 data tables

Values of $A_1^{\rm p}$ and $g_1^{\rm p}$ for the 2011 COMPASS data at 200 GeV in ($x$, $Q^2$) bins.

Values of $A_1^{\rm p}$ and $g_1^{\rm p}$ for the 2011 COMPASS data at 200 GeV in $x$ bins averaged over $Q^2$.

Values of $A_1^{\rm p}$ for the 2007 COMPASS data at 160 GeV in ($x$, $Q^2$) bins.


Combination of Measurements of Inclusive Deep Inelastic $e^{\pm}p$ Scattering Cross Sections and QCD Analysis of HERA Data

The H1 & ZEUS collaborations Abramowicz, H. ; Abt, I. ; Adamczyk, L. ; et al.
Eur.Phys.J.C 75 (2015) 580, 2015.
Inspire Record 1377206 DOI 10.17182/hepdata.68951

A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in $\alpha_s(M_Z)=0.1183 \pm 0.0009 {\rm(exp)} \pm 0.0005{\rm (model/parameterisation)} \pm 0.0012{\rm (hadronisation)} ^{+0.0037}_{-0.0030}{\rm (scale)}$. An extraction of $xF_3^{\gamma Z}$ and results on electroweak unification and scaling violations are also presented.

9 data tables

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 318$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 300$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

HERA combined reduced cross sections $\sigma_{r,\rm NC}^{+}$ for NC $e^{+}p$ scattering at $\sqrt{s} = 251$ GeV; $\delta_{\rm stat}$, $\delta_{\rm uncor}$ and $\delta_{\rm cor}$ represent the statistical, uncorrelated systematic and correlated systematic uncertainties, respectively; $\delta_{\rm rel}$, $\delta_{\gamma p}$, $\delta_{\rm had}$ and $\delta_{1}$ to $\delta_{4}$ are the correlated sources of uncertainties arising from the combination procedure. The uncertainties are quoted in percent relative to $\sigma_{r,\rm NC}^{+}$.

More…

Next-to-leading order QCD analysis of polarized deep inelastic scattering data.

The E154 collaboration Abe, K. ; Akagi, T. ; Anderson, B.D. ; et al.
Phys.Lett.B 405 (1997) 180-190, 1997.
Inspire Record 443186 DOI 10.17182/hepdata.27078

We present a Next-to-Leading order perturbative QCD analysis of world data on the spin dependent structure functions $g_1^p, g_1^n$, and $g_1^d$, including the new experimental information on the $Q^2$ dependence of $g_1^n$. Careful attention is paid to the experimental and theoretical uncertainties. The data constrain the first moments of the polarized valence quark distributions, but only qualitatively constrain the polarized sea quark and gluon distributions. The NLO results are used to determine the $Q^2$ dependence of the ratio $g_1/F_1$ and evolve the experimental data to a constant $Q^2 = 5 GeV^2$. We determine the first moments of the polarized structure functions of the proton and neutron and find agreement with the Bjorken sum rule.

7 data tables

Data from the 2.75 degree spectrometer.

Data from the 2.75 degree spectrometer evolved to a mean Q**2 of 5 GeV**2 using the MSBAR parameterization. The second systematic error is due to the evolution.

Data from the 5.5 degree spectrometer.

More…

A precision measurement of nuclear muon capture on He-3.

Ackerbauer, P. ; Balin, D.V. ; Baturin, V.M. ; et al.
Phys.Lett.B 417 (1998) 224-232, 1998.
Inspire Record 447785 DOI 10.17182/hepdata.28264

The muon capture rate in the reaction mu- 3He -> nu + 3H has been measured at PSI using a modular high pressure ionization chamber. The rate corresponding to statistical hyperfine population of the mu-3He atom is (1496.0 +- 4.0) s^-1. This result confirms the PCAC prediction for the pseudoscalar form factors of the 3He-3H system and the nucleon.

1 data table

Here CONST is defined as follows: CONST = lambda0/K/(1-e), where lambda0 = 0.45516E6 1/sec is the decay rate of MU, e=7.18% is the total correction factor and K is the prescaling factor of the muon trigger (from 500 till 2000). First reaction corresponds to detected tritons, while the second one describes stopped muons not followed by muon capture. The error is the combination of statistical and systematic errors.


Light isovector resonances in $\pi^- p \to \pi^-\pi^-\pi^+ p$ at 190 GeV/${\it c}$

The COMPASS collaboration Aghasyan, M. ; Alexeev, M.G. ; Alexeev, G.D. ; et al.
Phys.Rev.D 98 (2018) 092003, 2018.
Inspire Record 1655631 DOI 10.17182/hepdata.82958

We have performed the most comprehensive resonance-model fit of $\pi^-\pi^-\pi^+$ states using the results of our previously published partial-wave analysis (PWA) of a large data set of diffractive-dissociation events from the reaction $\pi^- + p \to \pi^-\pi^-\pi^+ + p_\text{recoil}$ with a 190 GeV/$c$ pion beam. The PWA results, which were obtained in 100 bins of three-pion mass, $0.5 &lt; m_{3\pi} &lt; 2.5$ GeV/$c^2$, and simultaneously in 11 bins of the reduced four-momentum transfer squared, $0.1 &lt; t' &lt; 1.0$ $($GeV$/c)^2$, are subjected to a resonance-model fit using Breit-Wigner amplitudes to simultaneously describe a subset of 14 selected waves using 11 isovector light-meson states with $J^{PC} = 0^{-+}$, $1^{++}$, $2^{++}$, $2^{-+}$, $4^{++}$, and spin-exotic $1^{-+}$ quantum numbers. The model contains the well-known resonances $\pi(1800)$, $a_1(1260)$, $a_2(1320)$, $\pi_2(1670)$, $\pi_2(1880)$, and $a_4(2040)$. In addition, it includes the disputed $\pi_1(1600)$, the excited states $a_1(1640)$, $a_2(1700)$, and $\pi_2(2005)$, as well as the resonancelike $a_1(1420)$. We measure the resonance parameters mass and width of these objects by combining the information from the PWA results obtained in the 11 $t'$ bins. We extract the relative branching fractions of the $\rho(770) \pi$ and $f_2(1270) \pi$ decays of $a_2(1320)$ and $a_4(2040)$, where the former one is measured for the first time. In a novel approach, we extract the $t'$ dependence of the intensity of the resonances and of their phases. The $t'$ dependence of the intensities of most resonances differs distinctly from the $t'$ dependence of the nonresonant components. For the first time, we determine the $t'$ dependence of the phases of the production amplitudes and confirm that the production mechanism of the Pomeron exchange is common to all resonances.

2 data tables

Real and imaginary parts of the normalized transition amplitudes $\mathcal{T}_a$ of the 14 selected partial waves in the 1100 $(m_{3\pi}, t')$ cells (see Eq. (12) in the paper). The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the transition amplitudes in the column headers. The $m_{3\pi}$ values that are given in the first column correspond to the bin centers. Each of the 100 $m_{3\pi}$ bins is 20 MeV/$c^2$ wide. Since the 11 $t'$ bins are non-equidistant, the lower and upper bounds of each $t'$ bin are given in the column headers. The transition amplitudes define the spin-density matrix elements $\varrho_{ab}$ for waves $a$ and $b$ according to Eq. (18). The spin-density matrix enters the resonance-model fit via Eqs. (33) and (34). The transition amplitudes are normalized via Eqs. (9), (16), and (17) such that the partial-wave intensities $\varrho_{aa} = |\mathcal{T}_a|^2$ are given in units of acceptance-corrected number of events. The relative phase $\Delta\phi_{ab}$ between two waves $a$ and $b$ is given by $\arg(\varrho_{ab}) = \arg(\mathcal{T}_a) - \arg(\mathcal{T}_b)$. Note that only relative phases are well-defined. The phase of the $1^{++}0^+ \rho(770) \pi S$ wave was set to $0^\circ$ so that the corresponding transition amplitudes are real-valued. In the PWA model, some waves are excluded in the region of low $m_{3\pi}$ (see paper and [Phys. Rev. D 95, 032004 (2017)] for a detailed description of the PWA model). For these waves, the transition amplitudes are set to zero. The tables with the covariance matrices of the transition amplitudes for all 1100 $(m_{3\pi}, t')$ cells can be downloaded via the 'Additional Resources' for this table.

Decay phase-space volume $I_{aa}$ for the 14 selected partial waves as a function of $m_{3\pi}$, normalized such that $I_{aa}(m_{3\pi} = 2.5~\text{GeV}/c^2) = 1$. The wave index $a$ represents the quantum numbers that uniquely define the partial wave. The quantum numbers are given by the shorthand notation $J^{PC} M^\varepsilon [$isobar$] \pi L$. We use this notation to label the decay phase-space volume in the column headers. The labels are identical to the ones used in the column headers of the table of the transition amplitudes. $I_{aa}$ is calculated using Monte Carlo integration techniques for fixed $m_{3\pi}$ values, which are given in the first column, in the range from 0.5 to 2.5 GeV/$c^2$ in steps of 10 MeV/$c^2$. The statistical uncertainties given for $I_{aa}$ are due to the finite number of Monte Carlo events. $I_{aa}(m_{3\pi})$ is defined in Eq. (6) in the paper and appears in the resonance model in Eqs. (19) and (20).