We report on a high precision measurement of ϕ-meson production in continuum events and in direct decays of the Υ(1S)- and Υ(2S)-mesons. The ratio of the total production rate of ϕ-mesons in direct Υ(1S)- and Υ(2S)-decays over that in continuum events is 1.32±0.08±0.09 and 1.07±0.13±0.11 respectively. This is compatible with the corresponding ratio obtained for lighter mesons, but is appreciably smaller than the relative baryon production rate.
PHI meson cross section on the continuum.
Differential particle density for PHI mesons in decays of upsilon(1S) and upsilon(2S).
No description provided.
We report measurements of π±K±, and p, p¯ inclusive cross sections and fractions in e+e− annihilation at s=29 GeV, for the momentum interval 0.01
No description provided.
No description provided.
No description provided.
The production of D * and D mesons has been studied in e + e − annihilations at √s = 29GeV. The data, corresponding to an integrated luminosity of 300 pb −1 , were obtained using the HRS detector at PEP. The cross section is measured to be R (D 0 + D + ) = 2.40±0.35 and we determine the electroweak asymmetry to be −9.9 ± 2.7%, which corresponds to an axial vector coupling constant product g e g c = 0.26 ± 0.07.
No description provided.
No description provided.
No description provided.
η production has been investigated by the Mark II collaboration at the SLAC e+e− storage ring PEP. η particles are reconstructed by their γγ decay mode. The η fragmentation function has been measured and found to be in good agreement with the Lund-model prediction. η′ production has been measured for the first time in high-energy e+e− annihilation. There is evidence at the 3σ level for Ds± decay into ηπ± and η′π±.
Numerical values supplied by G.Wormser.
Z = 0.0 point extrapolated using LUND fragmentation model.
Z = 0.0 point extrapolated using LUND fragmentation model.
Data from e + e − annihilations at 29 GeV have been used to measure the production cross section and fragmentation function of η mesons. The signal is observed in the η → γγ decay channel. The fragmentation for p η >1.5 GeV/ c agrees well with the prediction of the Lund model, whereas the prediction of the Webber model lies above the data. The mean multiplicity is measured to be 〈 n η 〉=0.58±0.10 η mesons per hadronic event, of which 0.51 represents the direct production of η and η ′ mesons in the fragmentation chain.
Statistical errors only.
Extrapolated to full z range using LUND model.
The production cross sections for the Λ, Σ0, Ξ−, Σ0 (1385), Ξ0 (1530) and Ω− hyperons have been measured, both in the continuum and in direct ϒ decays. Baryon rates in direct ϒ decays are enhanced by a factor of 2.5 or more compared to the continuum. Such a large baryon enhancement cannot be explained by standard fragmentation models. The strangeness suppression for baryons and mesons turns out to be the same. A strong suppression of spin 3/2 states is observed.
Hyperon rates per multihadronic event in direct UPSILON decays.
Hyperon rates per multihadronic event in the continuum.
LAMBDA spectrum (1/SIG(had))*D(SIG)/D(X) for UPSILON (1S) direct decays, with X = P/Pmax.
We report a measurement of the charged K ∗ (892) production in e + e − annihilations at 29 GeV center-of-mass energy. The 300 pb −1 data sample used for this analysis is obtained with the High Resolution Spectrometer at the SLAC storage ring PEP. The total mean multiplicity is measured to be 〈n K ∗± (892) 〉=0.62±0.045±0.04 per hadronic event. Evidence is also given for the production of a charged K 2 ∗ (1430) tensor meson.
Extrapolation to full x-range using Lund model.
Data requested from authors.
Extrapolation to full x-range usisng fragmentation friction predicted by the Webber cluster model.
The production of strange baryons Σ± (1385) and Ξ− has been observed in e+e− annihilations at 29 GeV center-of-mass energy, by use of data obtained with the High Resolution Spectrometer at the SLAC storage ring PEP. The total mean multiplicities are measured to be 〈nΣ±(1385)〉=0.033±0.006±0.005 and &〉=0.016±0.004 ±0.004 per hadronic event. The results are in good agreement with the Lund string model.
Lund model extrapolation to full x range.
Lund model extrapolation to full x range.
No description provided.
Neutral D ∗ meson production in e + e − annihilation at √ s =29 GeV has been studied using the high resolution spectrometer. The decay of D ∗0 into D 0 γ, where the D 0 decays into K −π + , has been observed. The production cross section in units of the point cross section is 0.63±0.22 for fractional energy Z ⩾0.5. The fragmentation function is compared with that of the D ∗+ meson measured in the same experiment.
No description provided.
Assuming additionaly BR(D0-->K PI) of 0.56 +- 0.005.
Corresponding R value.
The production of the tensor mesons f0(1270) and K*0(1430) and the scalar meson S(975) has been observed in e+e− annihilation at 29 GeV center-of-mass energy by use of data obtained with the high-resolution spectrometer at the SLAC e+e− storage ring PEP. The mean multiplicities for meson momenta greater than 1450 MeV/c are 〈nf0〉=0.11±0.04, 〈nK*0(1430)〉=0.10±0.06, and 〈nS〉=0.05±0.02 per hadronic event. The fragmentation functions of the tensor mesons are in good agreement with the predictions of the Webber cluster model. The data are consistent with a predominant strange-quark content on the S meson.
No description provided.
No description provided.