New Results are presented on nuclear effects in deep inelastic muon scattering on deuterium and iron targets at large Q 2 . The ratio F Fe 2 (x) F D 2 2 (x) measured in the kinematic range 0.06⩽ x ⩽0.70, 14GeV 2 ⩽ Q 2 ⩽70 GeV 2 is in good agreement with earlier measurements in the region of x > 0.25. At lower x , the structure function ratio exhibits an enhancement of ≈5%.
Q**2 RANGE FOR EACH X BIN IS AS FOLLOWS: 14 TO 20, 16 TO 30, 18 TO 35, 18 TO 46, 20 TO 106, 23 TO 106, 23 TO 150, 26 TO 200, 26 TO 200, 26 TO 200 GEV**2.
The spin correlation parameter A oonn for pp elastic scattering was measured at 0.88, 1.1, 1.3, 1.6, 1.8, 2.1, 2.4 and 2.7 GeV using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. At the first two energies, the new measurements at θ CM < 50° complete our previous data from 45° to 90°. Between 1.3 and 2.7 GeV the measurements were performed in two overlapping angular regions covering together the CM angles from 28° (at the lower energies) or 18° (at the highest energy) to > 90°. At all energies above 1.3 GeV the angular distribution shows a dip at fixed four-momentum transfer − t ∼ 0.90 (GeV/ c ) 2 . The value of A oonn ( θ CM = 90°) decreases from A oonn (90°) ≅ 0.57 at 0.88 GeV to A oonn (90°) ≅ 0.35 at 2.7 GeV. However, the large value found at 1.8 GeV indicates that the energy dependence is not monotonic.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Errors are statistical plus random-like instrumental uncertainties.
Both the np and the pp analyzing powers were measured simultaneously using the SATURNE II polarized deuteron beam at 0.550, 0.725, 0.900 and 1.15 GeV/nucleon. The results for the pp analyzing power coincide with the free pp elastic scattering data. We thus can assume that also the np analyzing power is equal to the one for scattering of free polarized neutrons. The np data cover the angular region 90° ≤ θ CM ≤ 125°. Our results for the np analyzing power clarify a discrepancy between earlier data at 0.5 GeV and allow conclusions about the energy dependence of the minimum of polarization at θ CM ⋍ 100° in the region from 0.5 to 0.9 GeV.
No description provided.
No description provided.
No description provided.
The pp analyzing power was measured using the SATURNE II polarized proton beam and the Saclay frozen spin polarized target. The measurements at 0.88 and 1.1 GeV were carried out in the angular region θ CM from 28° to ≅50° and complete our previous measurements from 45 ° to 90°. Above 1.1 GeV the measurements presented here cover both regions, extending from θ CM = 28° (at the lower energies) or θ CM = 18° (at the higher energies) to θ CM > 90°. The shape of the angular distribution A oono ( pp ) = ƒ(θ CM ) changes considerably with increasing energy. The new data show the onset of a characteristic t -dependence of the analyzing power, with a minimum at − t ≅ 1.0 (GeV/ c ) 2 followed by a second maximum at − t ≅ 1.5 (GeV/ c ) 2 . This structure is present at all energies, from kinematic threshold to 200 GeV.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
Errors are statistical plus random-like instrumental uncertainties. Results using polarised target.
None
No description provided.
No description provided.
No description provided.
Within the framework of the quark-parton model, the quark and anti-quark structure functions of the proton have been measured by fitting them to the distributions of the events in the Bjorkeny variable. The data used form the largest sample of neutrino and antineutrino interactions on a pure hydrogen target available, and come from exposures of BEBC to the CERN wide band neutrino and antineutrino beams. It is found that the ratiodv/uv of valence quark distributions falls with increasing Bjorkenx. In the context of the quark-parton model the results constrain the isospin composition of the accompanying diquark system. Models involving scattering from diquarks are in disagreement with the data.
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
This Letter reports results of a search for radiative production, by e+e− annihilation of particles that interact only weakly in matter. The search has been made in the total data set of 115 pb−1 acquired with the ASP detector at the SLAC storage ring PEP (s=29 GeV). No anomalous signal was observed. The number of generations of light neutrinos has been limited to Nν<7.5 (90% confidence level). Limits are also placed on the masses of particles predicted to exist by models of supersymmetry.
No description provided.
Cross sections for inclusive direct photon production in π−p, π+p, and pp collisions at 300 GeV/c are measured at transverse momenta pT up to 7 GeV/c (xT=0.6). For π−p→γX also the rapidity distribution is presented. The cross-section ratio σ(π−p→γX)/σ(π+p→γX) is found to be 1 at pT=4 GeV/c and rises with increasing pT. This observation signals the occurrence of valence-quark–antiquark annihilation. The results are in good agreement with QCD predictions.
THERE IS ALSO A 1 PCT UNCERTAINTY IN THE PT SCALE AND A 7 PCT UNCERTAINTY IN THE NORMALISATION.