None
No description provided.
The production of $\pi^+$, $\pi^-$, $K^+$, $K^-$, p, and pbar at mid-rapidity has been measured in proton-proton collisions at $\sqrt{s} = 900$ GeV with the ALICE detector. Particle identification is performed using the specific energy loss in the inner tracking silicon detector and the time projection chamber. In addition, time-of-flight information is used to identify hadrons at higher momenta. Finally, the distinctive kink topology of the weak decay of charged kaons is used for an alternative measurement of the kaon transverse momentum ($p_{\rm T}$) spectra. Since these various particle identification tools give the best separation capabilities over different momentum ranges, the results are combined to extract spectra from $p_{\rm T}$ = 100 MeV/$c$ to 2.5 GeV/$c$. The measured spectra are further compared with QCD-inspired models which yield a poor description. The total yields and the mean $p_{\rm T}$ are compared with previous measurements, and the trends as a function of collision energy are discussed.
Transverse momentum spectra for positive and negative pions.
Transverse momentum spectra for positive and negative kaons.
Transverse momentum spectra for protons and antiprotons.
The production of mesons containing strange quarks (K$^0_s$, $\phi$) and both singly and doubly strange baryons ($\Lambda$, Anti-$\Lambda$, and $\Xi$+Anti-$\Xi$) are measured at central rapidity in pp collisions at $\sqrt{s}$ = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields (
The measured production spectra for K0s hadrons as a function of pT.
The measured production spectra for Lambda hadrons as a function of pT.
The measured production spectra for Anti-Lambda hadrons as a function of pT.
We report on measurements of the branching ratios of the decays B+→χc10(1P)K+ and B+→J/ψK+π+π−, where χc10(1P)→J/ψγ and J/ψ→μ+μ− in pp¯ collisions at s=1.8TeV. Using a data sample from an integrated luminosity of 110pb−1 collected by the Collider Detector at Fermilab we measure the branching ratios to be BR(B+→χc10(1P)K+)=15.5±5.4(stat)±1.5(syst)±1.3(br)×10−4 and BR(B+→J/ψK+π+π−)=6.9±1.8(stat)±1.1(syst)±0.4(br)×10−4 where (br) is due to the finite precision on BR(B+→J/ψK+), BR(χc10(1P)→J/ψγ) is used to normalize the signal yield, and (syst) encompasses all other systematic uncertainties.
Branching ratio for B+ decay in chi_c1(1P) and K+ Last error is due to finite precision on the branching ratio for chi_c1(1P) --> J/psi photon.
Branching ratio for B+ decay in J/psi K+ pi+ pi- Last error is due to finite precision on the branching ratio for B+ --> J/psi K+.
A study has been performed of the reaction pbar p -> 4K using in-flight antiprotons from 1.1 to 2.0 GeV/c incident momentum interacting with a hydrogen jet target. The reaction is dominated by the production of a pair of phi mesons. The pbar p -> phi phi cross section rises sharply above threshold and then falls continuously as a function of increasing antiproton momentum. The overall magnitude of the cross section exceeds expectations from a simple application of the OZI rule by two orders of magnitude. In a fine scan around the xi/f_J(2230) resonance, no structure is observed. A limit is set for the double branching ratio B(xi -> pbar p) * B(xi -> phi phi) < 6e-5 for a spin 2 resonance of M = 2.235 GeV and Width = 15 MeV.
No description provided.
No description provided.
Fine scan of the PHI PHI cross section.
The pbar p -> Ks Ks -> 4pi+/- cross section was measured at incident antiproton momenta between 0.6 and 1.9 GeV/c using the CERN Low Energy Antiproton Ring (LEAR). This investigation was part of a systematic study of in-flight antiproton-proton annihilations into two-neutral-meson final states in a search for hadronic resonances. A coarse scan of the pbar p -> Ks Ks cross section as a function of center-of-mass energy between 1.964 and 2.395 GeV/c^2 and a fine scan of the region surrounding the Xi(2220) are presented. Upper limits on the product branching ratio BR(Xi -> pbar p)BR(Xi -> Ks Ks) are determined for a wide range of mass and width assumptions based on the non-observation of the Xi(2220). A rise in the pbar p -> Ks Ks cross section is observed near 2.15 GeV/c^2, which is consistent with the f2(2150) resonance.
No description provided.
The decay Λb0→J/ψ Λ is observed in 110 pb−1 of pp¯ collisions taken at s=1.8 TeV. These data are used to measure a Λb0 mass of 5621±4(stat)±3(syst) MeV/c2, and a mass difference between the Λb0 and the B0 of 340±5(stat)±1(syst) MeV/c2. The production cross-section times branching fraction for the decay Λb0→J/ψ Λ relative to that for the decay B0→J/ψ KS0 has been measured to be 0.27±0.12(stat)±0.05(syst).
No description provided.
We report a measurement of the ratios of the decay rates of the B~+, B~0 and B~0_s mesons into exclusive final states containing a J/psi meson. The final states were selected from 19.6 pb~{-1} of p-pbar collisions recorded by the Collider Detector at Fermilab. These data are interpreted to determine the bquark fragmentation fractions f_u, f_d and f_s. We also determine the branching fractions for the decay modes B~+ --> J/psi K~+, B~+ --> J/psi K~*(892)~+, B~0 --> J/psi K~0, B~0 --> J/psi K~*(892)~0 and B_s~0 --> J/psi phi(1020). We discuss the implications of these measurements to B meson decay models.
Charge conjugated states are implied. FD is considered as a quark fragmentation fraction.
The JETSET (PS202) experiment at CERN-LEAR searches for hadronic resonances by means of in-flight antiproton-proton annihilations in the reaction p p → φφ . In order to obtain sufficient luminosity and good final-state mass resolution, this experiment uses an internal hydrogen-cluster jet target intersecting the LEAR antiproton beam. We report on the study of the reaction p p → 4K ± at 1.4 GeV / c incident p̄ momentum, and we present the first experimental observation of a stro φφ signal in this reaction.
No description provided.
No description provided.
None
NUCLEUS IS P, C, AL, CU.
NUCLEUS IS P, C, AL, CU.
NUCLEUS IS P, C, AL, CU.