We present the results of a search for leptons produced in coincidence with a prompt muon in neutron-beryllium collisions at 300 GeV/c. The experiment was sensitive to trigger muons and associated leptons of both low momentum and low transverse momentum. A clear μ±μ∓ signal was found, but no significant μ±e∓ signal was observed. We report an upper limit for associated charmed-particle production [σCC¯·B(C→μ+X)·B(C→e+X)] of < 340 nb/nucleon, at the 95% confidence level.
The cross section for CHARM and CHARMBNAR particle production is obtained with the assumption that BR(CHARM --> MU+ X) = 15 PCT.
None
No description provided.
No description provided.
No description provided.
We present results on flux-normalized neutrino and antineutrino cross sections near y=0 from data obtained in the Fermilab narrow-band beam. We conclude that values of σ0=dσdy|y=0 are consistent with rising linearly with energy over the range 45<~Eν<~20.5 GeV. The separate averages of ν and ν¯, each measured to 4%, are equal to well within the errors. The best fit for the combined data gives σ0E=(0.719±0.035)×10−38 cm2/GeV at an average Eν of 100 GeV.
FE nucleus. The SIG/Enu is fitted to CONST(N=SIG)+CONST(N=T)*E.
FE nucleus. Averaged over the energies and beams.
Decay modes of the charmed mesons, D 0 and D + , are studied in e + e − annihilation data at 4.03 and 4.41 GeV c.m. energy. The products of cross section times branching ratio are measured for the K − π + , K − π + π + π − , K S π + π − and K − π + π + final states. Upper limits are established for the Cabibbo forbidden decays via π + π − , K + K − , K + K − π + , K + π + π − and π + π − π + . The K − π + π + π − final state is shown to be dominated by K − π + ρ 0 .
THESE PARTIAL CROSS SECTIONS ARE CONVERTED TO TOTAL D INCLUSIVE CROSS SECTIONS USING KNOWN BRANCHING RATIOS AND TABULATED IN M. PICCOLO ET AL., PL 86B, 220 (1979).
None
SIG(C=BACKWARD) = SIG(-UP<1 GEV**2)/(1-EXP(-SLOPE)). UP DISTRIBUTION OF EVENTS HAS A PERFECT EXPONENTIAL SHAPE.
We report measurements of the electroproduction of single charged pions from hydrogen and deuterium targets for values of ε in the range 0.35<ε<0.45. Data were taken with a hydrogen target at the (W, Q2) points (2.15 GeV, 1.2 GeV2), (2.65, 2.0), (2.65, 3.4), (2.65, 6.0), and (2.65, 10.0). Data were taken with a deuterium target at the (W, Q2) points (2.15, 1.2) and (2.65, 2.0). The transverse cross section obtained by using these data in conjunction with earlier data at high ε to separate the longitudinal and transverse components is used in conjunction with the new data and the t-channel Born term to determine the pion form factor and to re-evaluate previously reported measurements. In the range 0.15 GeV2
SEPARATED TRANSVERSE AND LONGITUDINAL VIRTUAL-PHOTON CROSS SECTIONS PREVIOUSLY PUBLISHED IN C. J. BEBEK ET AL., PRL 37, 1326 (1976).
DATA POINT 1 (HYDROGEN TARGET).
DATA POINT 1 (HYDROGEN TARGET).
We report measurements of semi-inclusive pion electroproduction from both hydrogen and deuterium targets carried out at the Wilson Synchrotron Laboratory at Cornell University. Measurements were made at the (W, Q2) points (2.15 GeV, 1.2 GeV2), (2.15, 4.0), and (3.11, 1.2) with hydrogen and deuterium, and at (2.15, 2.0), (2.67, 3.3), and (3.11, 1.7) with hydrogen only. The invariant virtual-photoproduction cross section for pions scaled by the total cross section is studied as a function of x′, pT2, W, and Q2. The invariant structure function shows no Q2 dependence and a weak W dependence. The ratio of π+ to π− production is also presented, but a distinction between a universal ω or W dependence cannot be made.
No description provided.
No description provided.
No description provided.
Measurements of the ν and ν¯ weak hadronic neutral-current total cross sections and hadron energy distributions are consistent with a V−A form for this current. They are three standard deviations from pure V, pure A, or a pure T form and unambiguously exclude V+A and any linear combination of S and P.
DATA FOR VARIOUS BEAM FOCUSING.
No description provided.
The properties of the final-state hadronic system in antineutrino-proton charged-current interactions are presented. The events were observed in the Fermilab 15-foot hydrogen bubble chamber. The average energy of the events is ∼30 GeV, but there are some interactions beyond 100 GeV. The mean multiplicity of the charged hadrons varies as 〈nCH〉=(0.06±0.06)+(1.22±0.03)lnW2 for hadronic masses W in the range 1.0
No description provided.
No description provided.
No description provided.
This paper gives a detailed description of an experiment which studies the interactions of muon-type neutrinos in hydrogen and deuterium. The experiment was performed at the Zero Gradient Synchrotron using the wide-band neutrino beam incident on the Argonne 12-foot bubble chamber filled with hydrogen and deuterium. The neutrino energy spectrum peaks at 0.5 GeV and has a tail extending to 6 GeV. The shape and intensity of the flux is determined using measurements of pion yields from beryllium. The produced pions are focused by one or (for the latter part of the experiment) two magnetic horns. A total of 364000 pictures were taken with a hydrogen filling of the bubble chamber and 903 000 with a deuterium filling. The scanning and other analyses of the events are described. The most abundant reaction occurs off neutrons and is quasi-elastic scattering νd→μ−pps. The separation of these events from background channels is discussed. The total and differential cross sections are analyzed to obtain the axial-vector form factor of the nucleon. Our result, expressed in terms of a dipole form factor, gives an axial-vector mass of 0.95±0.09 GeV. A comparison is made to previous measurements using neutrino beams, and also to determinations based upon threshold pion electroproduction experiments. In addition, the data are used to measure the weak vector form factor and so check the conserved-vector-current hypothesis.
Measured Quasi-Elastic total cross section.