Date

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 103 (2009) 251601, 2009.
Inspire Record 830686 DOI 10.17182/hepdata.98578

Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a \P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$=200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.

3 data tables

$\langle cos(\phi_{\alpha}+\phi_{\beta}−2\Psi_{RP})\rangle$ in Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV calculated using Eq. 2. The thick solid (Au+Au) and dashed (Cu+Cu) lines represent HIJING calculations of the contributions from 3-particle correlations. Shaded bands represent uncertainty from the measurement of $v_{2}$. Collision centrality increases from left to right.

Dependence of $\langle cos(\phi_{\alpha}+\phi_{\beta}−2\Psi_{RP})\rangle$ on $\frac{1}{2}(p_{t,\alpha}+p_{t,\beta})$ calculated using no upper cut on particles’ $p_{t}$. Shaded bands represent $v_{2}$ uncertainty.

$\langle cos(\phi_{\alpha} + \phi_{\beta} − 2\Psi_{RP})\rangle$ results from 200 GeV Au+Au collisions are compared to calculations with event generators HIJING (with and without an “elliptic flow afterburner”),UrQMD (connected by dashed lines), and MEVSIM. Thick lines represent HIJING reaction-plane-independent background.


Version 2
Long range rapidity correlations and jet production in high energy nuclear collisions

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 80 (2009) 064912, 2009.
Inspire Record 830070 DOI 10.17182/hepdata.101345

The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation \dphino, in d+Au and central Au+Au collisions at $\rts = 200$ GeV. Significant correlated yield for pairs with large longitudinal separation \deta is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in \detano$\times$\dphi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in \dphi and \textcolor{black}{depends only weakly on} $\deta$, the 'ridge'. Using two systematically independent analyses, \textcolor{black}{finite ridge yield} is found to persist for trigger $\pt > 6$ \GeVc, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range ($2 < \pt < 4 \GeVc$).

7 data tables

FIG. $2: \quad Y_{\text {slice }}(\Delta \eta ; \delta=0.3)$ (Eq. 5 ) for central Au+Au collisions, $2 \mathrm{GeV} / \mathrm{c}<p_{t}^{a s s o c}<p_{t}^{t r i g}$, and various $p_{t}^{t r i g}$ vs. $\Delta \eta$; the shaded bands represents the systematic uncertainties due to $v_{2}$ (not shown for $6<p_{t}^{\text {trig }}<10 \mathrm{GeV} / \mathrm{c}$ ). The solid and dashed lines represents a constant or linear fit to $1<|\Delta \eta|$ $<1.8$; only shown for $3<p_{t}^{t r i g}<4 \mathrm{GeV} / c$ (see text). Some data points are displaced horizontally for clarity.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

FIG. 3. Left panel: width of Gaussian fit to jet-like peak for Eq. (6) $(\Delta \eta$ width, circles) and Eq. (7) $(\Delta \phi$ width, triangles) ; $ 2 \mathrm{GeV}/c<p_{t}^{\text{assoc}}<p_{t}^{\text {trig }}$, as a function of $p_{t}^{\text {trig }},$ for central $\mathrm{Au}+$ Au collisions (filled symbols) and $d+$ Au collisions (open symbols). Some data points are displaced horizontally for clarity. Right panel: the distributions of Eqs. (6) and (7) for $4<p_{t}^{\text {trig }}<5 \mathrm{GeV} / c$ and $2 \mathrm{GeV} / c<p_{t}^{\text {assoc }}<p_{t}^{\text {trig }}$.

More…

Differential cross sections for the reactions gamma p-> p eta and gamma p -> p eta-prime

The CLAS collaboration Williams, M. ; Krahn, Z. ; Applegate, D. ; et al.
Phys.Rev.C 80 (2009) 045213, 2009.
Inspire Record 830257 DOI 10.17182/hepdata.52983

High-statistics differential cross sections for the reactions gamma p -> p eta and gamma p -> p eta-prime have been measured using the CLAS at Jefferson Lab for center-of-mass energies from near threshold up to 2.84 GeV. The eta-prime results are the most precise to date and provide the largest energy and angular coverage. The eta measurements extend the energy range of the world's large-angle results by approximately 300 MeV. These new data, in particular the eta-prime measurements, are likely to help constrain the analyses being performed to search for new baryon resonance states.

104 data tables

Differential cross section for the W range 1.68 to 1.69 GeV.

Differential cross section for the W range 1.69 to 1.70 GeV.

Differential cross section for the W range 1.70 to 1.71 GeV.

More…

Photoproduction of $\eta$ and $\eta\prime$ Mesons off Protons

The CBELSA/TAPS collaboration Crede, V. ; McVeigh, A. ; Anisovich, A.V. ; et al.
Phys.Rev.C 80 (2009) 055202, 2009.
Inspire Record 836340 DOI 10.17182/hepdata.53229

Total and differential cross sections for $\eta$ and $\eta ^\prime$ photoproduction off the proton have been determined with the CBELSA/TAPS detector for photon energies between 0.85 and 2.55 GeV. The $\eta$ mesons are detected in their two neutral decay modes, $\eta\to\gamma\gamma$ and $\eta\to 3\pi^0\to 6\gamma$, and for the first time, cover the full angular range in $\rm cos \theta_{cm}$ of the $\eta$ meson. These new $\eta$ photoproduction data are consistent with the earlier CB-ELSA results. The $\eta ^\prime$ mesons are observed in their neutral decay to $\pi^0\pi^0\eta\to 6\gamma$ and also extend the coverage in angular range.

56 data tables

Differential cross section for ETA production at incident photon energy 0.850 to 0.900 GeV.

Differential cross section for ETA production at incident photon energy 0.900 to 0.950 GeV.

Differential cross section for ETA production at incident photon energy 0.950 to 1.000 GeV.

More…

Rapidity dependence of the proton-to-pion ratio in Au+Au and p+p collisions at sqrt(s_NN) = 62.4 and 200 GeV

The BRAHMS collaboration Arsene, I.G. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 684 (2010) 22-27, 2010.
Inspire Record 834310 DOI 10.17182/hepdata.89450

The proton-to-pion ratios measured in the BRAHMS experiment for Au+Au and p+p collisions at $\sqrt{s_{NN}}$ = 62.4 and 200 GeV are presented as a function of transverse momentum and collision centrality at selected pseudorapidities in the range of 0 to 3.8. A strong pseudorapidity dependence of these ratios is observed. We also compare the magnitude and p_T-dependence of the p/pi ratios measured in Au+Au collisions at \rootsnn{200} and $\eta \approx 2.2$ with the same ratio measured at \rootsnn{62.4} and $\eta = 0$. The great similarity found between these ratios throughout the whole p_T range (up to 2.2 GeV/$c$) is consistent with particle ratios in A+A collisions being described with grand-canonical distributions characterized by the baryo-chemical potential \mibn. At the collision energy of 62.4 GeV, we have observed a unique point in pseudorapidity, $\eta = 3.2$, where the p/pi+ ratio is independent of the collision system size in a wide p_T-range of $0.3 \le p_{T} \le 1.8$ GeV/$c$.

29 data tables

$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

$\mathrm{p}/\mathrm{\pi}^{+}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=200\,\mathrm{Ge\!V}$

More…

Kaon and Pion Production in Central Au+Au Collisions at \sqrt{s_{NN}}=62.4 GeV

The BRAHMS collaboration Arsene, I.C. ; Bearden, I.G. ; Beavis, D. ; et al.
Phys.Lett.B 687 (2010) 36-41, 2010.
Inspire Record 836865 DOI 10.17182/hepdata.89451

Invariant pT spectra and rapidity densities covering a large rapidity range(-0.1 < y < 3.5) are presented for $\pi^{\pm}$ and $K^{\pm}$ mesons from central Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV. The mid-rapidity yields of meson particles relative to their anti-particles are found to be close to unity ($\pi^-/\pi^+ \sim 1$, $K^-/K^+ \sim 0.85$) while the anti-proton to proton ratio is $\bar{p}/p \sim 0.49$. The rapidity dependence of the $\pi^-/\pi^+$ ratio is consistent with a small increase towards forward rapidities while the $K^-/K^+$ and $\bar{p}/p$ ratios show a steep decrease to $\sim$ 0.3 for kaons and 0.022 for protons at $y\sim 3$. It is observed that the kaon production relative to its own anti-particle as well as to pion production in wide rapidity and energy ranges shows an apparent universal behavior consistent with the baryo-chemical potential, as deduced from the $\bar{p}/p$ ratio, being the driving parameter.

40 data tables

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=-0.2-0.0$ for $0-10$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.0-0.2$ for $0-10$% central

$\frac{1}{2\pi p_{\mathrm{T}}}\frac{\mathrm{d}^2N}{\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}$ versus $p_{\mathrm{T}}$ for $\mathrm{\pi}^{+}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=62.4\,\mathrm{Ge\!V}$ near $y=0.7-0.9$ for $0-10$% central

More…

Spectra of identified high-$p_{T}$ $\pi^\pm$ and $p(\bar{p})$ in Cu$+$Cu collisions at $\sqrt{s_{NN}}=200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 054907, 2010.
Inspire Record 837075 DOI 10.17182/hepdata.98965

We report new results on identified (anti)proton and charged pion spectra at large transverse momenta (3<$p_{T}$<10 GeV/c) from Cu+Cu collisions at $\sqrt{s_{NN}}$=200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-$p_{T}$ and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au+Au data, and allow the detailed exploration for the on-set of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.

9 data tables

Transverse momentum spectra of pions (a) and protons (b) produced in Cu+Cu collisions at $\sqrt{s_{NN}}$=200 GeV. Data are presented for four centrality classes: 0-10%, 10-20%, 20-40% and 40-60%. Closed and open symbols are used for particles and antiparticles, respectively. For clarity, data are separated by powers of four.

Transverse momentum spectra of pions (a) and protons (b) produced in Cu+Cu collisions at $\sqrt{s_{NN}}$=200 GeV. Data are presented for four centrality classes: 0-10%, 10-20%, 20-40% and 40-60%. Closed and open symbols are used for particles and antiparticles, respectively. For clarity, data are separated by powers of four.

Anti-particle to particle ratios, as a function of transverse momentum for pions (a) and protons (b). Data for the four centrality classes show little centrality dependence. Errors are statistical only.

More…

Cross sections and Rosenbluth separations in 1H(e, e'K+)Lambda up to Q2=2.35 GeV2

The Jefferson Lab Hall A collaboration Coman, M. ; Markowitz, P. ; Aniol, K.A. ; et al.
Phys.Rev.C 81 (2010) 052201, 2010.
Inspire Record 837422 DOI 10.17182/hepdata.54197

The kaon electroproduction reaction 1H(e,e'K+)Lambda was studied as a function of the virtual-photon four-momentum, Q2, total energy, W, and momentum transfer, t, for different values of the virtual- photon polarization parameter. Data were taken at electron beam energies ranging from 3.40 to 5.75 GeV. The center of mass cross section was determined for 21 kinematics corresponding to Q2 of 1.90 and 2.35 GeV2 and the longitudinal, sigmaL, and transverse, sigmaT, cross sections were separated using the Rosenbluth technique at fixed W and t. The separated cross sections reveal a flat energy dependence at forward kaon angles not satisfactorily described by existing electroproduction models. Influence of the kaon pole on the cross sections was investigated by adopting an off-shell form factor in the Regge model which better describes the observed energy dependence of sigmaT and sigmaL.

11 data tables

Measured values of the separated cross section at Q**2 = 2.35 GeV**2 and W = 1.85 GeV.. Errors contain both statistics and systematics.

Measured values of the separated cross section at Q**2 = 1.90 GeV**2.. Errors contain both statistics and systematics.

Measured values of the separated cross section at Q**2 = 2.35 GeV**2.. Errors contain both statistics and systematics.

More…

Observation of pi^+pi^-pi^+pi^- Photoproduction in Ultra-Peripheral Heavy Ion Collisions at STAR

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 81 (2010) 044901, 2010.
Inspire Record 838875 DOI 10.17182/hepdata.98963

We present a measurement of pi^+pi^-pi^+pi^- photonuclear production in ultra-peripheral Au-Au collisions at sqrt(s_{NN}) = 200 GeV from the STAR experiment. The pi^+pi^-pi^+pi^- final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi^+pi^-pi^+pi^- invariant mass spectrum of the coherent events exhibits a broad peak around 1540 pm 40 MeV/c^2 with a width of 570 pm 60 MeV/c^2, in agreement with the photoproduction data for the rho^0(1700). We do not observe a corresponding peak in the pi^+pi^- final state and measure an upper limit for the ratio of the branching fractions of the rho^0(1700) to pi^+pi^- and pi^+pi^-pi^+pi^- of 2.5 % at 90 % confidence level. The ratio of rho^0(1700) and rho^0(770) coherent production cross sections is measured to be 13.4 pm 0.8 (stat.) pm 4.4 (syst.) %.

6 data tables

Distribution of the $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ transverse momentum $p_{T} = |\sum_{i=1}^{4}\overrightarrow{p}_{T,i}|$􏰇: The filled circles are the measured 􏰇points with the statistical errors. The hatched filled histogram shows the expected distribution from simulation of coherent photoproduction (cf. section III). The strong enhancement at low transverse momenta is due to coherently produced $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$. This unique signature is used in the event selection which requires $p_{T}$ < 150 MeV/c (arrow). The remaining background is estimated from +2 or −2 charged four-prong combinations, by normalizing (factor = 1.186 $\pm$ 0.054) their $p_{T}$ distribution (gray filled histogram) to that of the neutral four-prongs in the region of $p_{T}$ > 250 MeV/c (vertical line) yielding the unfilled histogram (see section IV).

Invariant Mass distribution of two-pion subsystems: The filled circles show the measured $\pi^{+}\pi^{-}$ invariant mass spectrum for the selected four-prong sample (four entries per event) with statistical errors. The open circles represent the mass spectrum of the like-sign pion pairs (two entries per event). The unlike-sign mass distribution exhibits an enhancement with respect to the like-sign pairs in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).

Invariant Mass distribution of two-pion subsystems: The open circles show the measured invariant mass spectrum of the lightest $\pi^{+}\pi^{-}$ pair in the event with the bars indicating the statistical errors. The filled circles represent the invariant mass distribution of the $\pi^{+}\pi^{-}$ that is recoiling against the lightest pair. The spectrum exhibits a clear peak in the $\rho^{0}$(770) region. The solid line histograms show the prediction from simulation assuming the relative S-wave decay $\rho`\rightarrow\rho^{0}$(770) $f_{0}$(600).

More…

Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.C 82 (2010) 034909, 2010.
Inspire Record 839470 DOI 10.17182/hepdata.101353

Charged-particle spectra associated with direct photon ($\gamma_{dir} $) and $\pi^0$ are measured in $p$+$p$ and Au+Au collisions at center-of-mass energy $\sqrt{s_{_{NN}}}=200$ GeV with the STAR detector at RHIC. A hower-shape analysis is used to partially discriminate between $\gamma_{dir}$ and $\pi^0$. Assuming no associated charged particles in the $\gamma_{dir}$ direction (near side) and small contribution from fragmentation photons ($\gamma_{frag}$), the associated charged-particle yields opposite to $\gamma_{dir}$ (away side) are extracted. At mid-rapidity ($|\eta|<0.9$) in central Au+Au collisions, charged-particle yields associated with $\gamma_{dir}$ and $\pi^0$ at high transverse momentum ($8< p_{T}^{trig}<16$ GeV/$c$) are suppressed by a factor of 3-5 compared with $p$ + $p$ collisions. The observed suppression of the associated charged particles, in the kinematic range $|\eta|<1$ and $3< p_{T}^{assoc} < 16$ GeV/$c$, is similar for $\gamma_{dir}$ and $\pi^0$, and independent of the $\gamma_{dir}$ energy within uncertainties. These measurements indicate that the parton energy loss, in the covered kinematic range, is insensitive to the parton path length.

4 data tables

The $z_{T}$ dependence of $\pi^{0}-h^{\pm}$ near side and away-side associated particle yields. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

The $z_{T}$ dependence of away-side associated-particle yields for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

The $z_{T}$ dependence $I_{AA}$ for $\pi^{0}-h^{\pm}$ triggers and $\gamma_{dir}$ triggers. The errors denoted 'syst' are systematic errors correlated in $z_{T}$. The errors denoted 'syst uncorr' are point-to-point systematic errors.

More…