Data from the reactions π−p→π−π−π+p and π+p→π+π+π−p have been obtained at 16 GeV/c in approximately equal samples from the BNL 80-in. hydrogen bubble chamber. We have studied both reactions for resonance production and compared our results with predictions of the one-pion-exchange model (OPEM) calculated by Wolf. The four-body longitudinal phase-space (LPS) plot suggested by Van Hove was used to analyze the data from both reactions. The events were separated according to distinct regions of the LPS plot in order to study the following classes of quasi-two-body final states: (1) diffractively produced three-pion states, (2) diffractively produced ππp states, (3) double-resonance production such as ρ0Δ++, (4) single-resonance production such as π−π−Δ++. The Van Hove analysis provided a much cleaner separation of resonances from background effects than the usual techniques. We observe production of the A1 and A2 mesons as well as the N*(1470) and N*(1700) isobars in the π+π−p system for both reactions. There is strong formation of the doubly resonant states ρ0Δ++ and f0Δ++ and the general features of the nondiffractive events are all in good agreement with one-pion exchange. Detailed comparisons between the data and the OPEM in each LPS plot region show that Van Hove analysis provides a sensitive test for the OPE model.
DEDUCED FROM PRONG CROSS SECTIONS NORMALIZED USING THE DATA OF K. J. FOLEY ET AL., PRL 19, 330 (1967).
No description provided.
No description provided.
Production of B(1235) and ρ(1710) mesons is observed in the four-pion decay modes π+π+π−π0 in 16−GeVc π±p collisions. Decay distributions and branching fractions into various modes are presented. Absence of the two-pion mode π−π0 for the ρ(1710) is noted.
No description provided.
The K − p differential and total elastic cross-sections have been measured at 14.25 GeV/ c . The results have been compared with various Regge models.
No description provided.
The reactions pp → NN π are studied at 19 GeV/ c and analysed in terms of the amplitudes with the low mass N π system in isospin states 1 2 and 3 2 respectively. The I − 1 2 cross section is compared with the corresponding one in π p→ ππ N at 8 GeV/ c .
'1'.
A spark-chamber experiment on the peripheral production of 9245 pion pairs by 12- and 18-GeV/c incident pions is reported and analyzed in terms of a one-pion-exchange model in which the final state at the nucleon vertex contains generally one or more pions. The relevant dynamics and kinematics appropriate to this problem are reviewed, and the experimental and analysis techniques giving good resolution and detection-bias correction are discussed in some detail. From the results, fair agreement is found between the data and the one-pion-exchange calculation of the ρ0 production cross sections and of the associated missing-mass spectra. The ρ0 is found to be consistent with a single peak, and no evidence of peak splitting is observed. A search for a narrow s-wave dipion resonance is made with negative results. Normalizing to the ρ0 meson, the s-wave π+π− scattering cross section is computed from the abundant low-dipion-mass events, giving a cross section falling smoothly from 50 mb (300 MeV) to about 20 mb (600 MeV). No evidence of an s-wave resonance is found in this range of energies. Below 450 MeV, the pion-pion scattering asymmetry favors backward scattering (by 2½ standard deviations), which is consistent with a negative and falling J=T=0 phase shift. The extrapolated forward-backward asymmetry and the s-wave cross section are both consistent with a J=T=0 phase shift near|90°| at about 750 MeV.
Dipion production cross section under RHO resonance. Errors are statistical only.
Dipion production cross section under RHO resonance. Errors are statistical only.
RHO0 cross section. Errors are statistical only.
Approximately 60 000 events have been collected in a spark chamber experiment at the CERN Proton Synchrotron which studied elastic diffraction scattering of π--p and p-p at incident momenta of 8.5, 12.4 and 18.4 GeV/c and of π+-p at 8.5 and 12.4 GeV/c. Magnetic analysis of the incoming and diffraction scattered particle, together with measurement of all angles, permitted each event to be determined as elastic subject to three constraints, so that the inelastic background was rejected with. high efficiency, even at the larger momentum, transfers. Much of the data have been processed by the CERN Automatic Flying-Spot DigitizerHPD. A detailed description of the experimental technique and of the methods of analysis is given. The results, together with data from lower energies, confirm the remarkable energy-independence of the shape of the pion-proton diffraction scattering peak up to |t| = 1.5 (GeV/c)2, wheret is the square of the four-momentum transfer, over a range of pion energies from 2 to 18 GeV. Proton-proton scattering does however appear to show a shrinking diffraction peak. In general, the data agree with other experiments using both counter and bubble chamber techniques, but some differences do appear. During the experiment, data were taken which set an upper limit of 2·102 μb/(GeV/c)2 on the differential elastic cross-section dσ/dt over a range of |t| from 20.9 to 23.4 (GeV/c)2 at 13.4 GeV/c incident pion momentum.
'1'. '2'. '3'. '4'.
'1'.
'1'.