Showing 10 of 28 results
Elliptic flow (v_2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7--62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with A Multiphase Transport Model and fit with a Blast Wave model.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
Measurements of midrapidity charged particle multiplicity distributions, $dN_{\rm ch}/d\eta$, and midrapidity transverse-energy distributions, $dE_T/d\eta$, are presented for a variety of collision systems and energies. Included are distributions for Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu$+$Cu collisions at $\sqrt{s_{_{NN}}}=200$ and 62.4 GeV, Cu$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, U$+$U collisions at $\sqrt{s_{_{NN}}}=193$ GeV, $d$$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, $^{3}$He$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV, and $p$$+$$p$ collisions at $\sqrt{s_{_{NN}}}=200$ GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, $N_{\rm part}$, and the number of constituent quark participants, $N_{q{\rm p}}$. For all $A$$+$$A$ collisions down to $\sqrt{s_{_{NN}}}=7.7$ GeV, it is observed that the midrapidity data are better described by scaling with $N_{q{\rm p}}$ than scaling with $N_{\rm part}$. Also presented are estimates of the Bjorken energy density, $\varepsilon_{\rm BJ}$, and the ratio of $dE_T/d\eta$ to $dN_{\rm ch}/d\eta$, the latter of which is seen to be constant as a function of centrality for all systems.
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 39 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 27 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 27 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 14.5 GeV
Transverse energy in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV
Multiplicity in Au+Au collisions at $\sqrt{s_{NN}}$ = 7.7 GeV
Transverse energy in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV
Transverse energy in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Multiplicity in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 62.4 GeV
Transverse energy in Cu+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in Cu+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Transverse energy in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV
Multiplicity in U+U collisions at $\sqrt{s_{NN}}$ = 193 GeV
Transverse energy in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Transverse energy in He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Multiplicity in He+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
Balance functions have been measured in terms of relative pseudorapidity ($\Delta \eta$) for charged particle pairs at the Relativistic Heavy-Ion Collider (RHIC) from Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the Large Hadron Collider (LHC) from Pb+Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at $\sqrt{s_{\rm NN}}$ = 7.7 GeV implies that a QGP is still being created at this relatively low energy.
The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=7.7$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.
The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=11.5$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.
The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=19.6$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.
The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=27$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.
The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=39$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.
The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=62.4$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.
The balance function in terms of $\Delta \eta$ for all charged particles with $0.2 < p_{T} < 2.0$ GeV/$c$ from central Au+Au collisions (0-5%) for $\sqrt{s_{NN}}=200$ GeV. The data are the measured balance functions corrected by subtracting balance functions calculated using mixed events. Also shown are balance functions calculated using shuffled events.
Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.
Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.
Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.
Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.
Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.
Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.
Energy dependence of the balance function widths compared with the widths of the balance functions calculated using shuffled events. Also shown are the balance function widths calculated using UrQMD. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution. Error bars represent the statistical error and the shaded bands represent the systematic error.
Balance function widths for the most central events ($0-5\%$) compared with balance function widths calculated using shuffled events. Also shown are balance function widths calculated using UrQMD and shuffled UrQMD events. The dashed line represents the width of the balance function calculated using shuffled events for a constant $dN/d\eta$ distribution.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ normalized to the most peripheral centrality bin compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ normalized to the most peripheral centrality bin compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ normalized to the most peripheral centrality bin compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ normalized to the most peripheral centrality bin compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ normalized to the most peripheral centrality bin compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ normalized to the most peripheral centrality bin compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ normalized to the most peripheral centrality bin compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
Acceptance-corrected balance function widths for Au+Au measured over the range $0.1 < \Delta \eta < 1.6$ normalized to the most peripheral centrality bin compared with similar results from Pb+Pb collisions from ALICE. Only statistical errors are shown. Lines represent fits of the form $a + b(N_{part})^{0.01}$.
We present measurements of $\Omega$ and $\phi$ production at mid-rapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27 and 39 GeV by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of $N(\Omega^{-}+\Omega^{+})/(2N(\phi))$. These ratios as a function of transverse momentum ($p_T$) fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at $\sqrt{s_{NN}}$ = 19.6, 27 and 39 GeV, and in central collisions at 11.5 GeV in the intermediate $p_T$ region of 2.4-3.6 GeV/c. We further evaluate empirically the strange quark $p_T$ distributions at hadronization by studying the $\Omega/\phi$ ratios scaled by the number of constituent quarks. The NCQ-scaled $\Omega/\phi$ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to $\sqrt{s_{NN}} >= 19.6$ GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark-matter to hadronic matter at collision energies below 19.6 GeV.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
Phi Meson Spectra.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
ks(pTs) = N(Omega+Anti-Omega)_(pT=3pTs)/2N(phi)_(pT=2pTs) N is the invariant yield.
ks(pTs) = N(Omega+Anti-Omega)_(pT=3pTs)/2N(phi)_(pT=2pTs) N is the invariant yield.
ks(pTs) = N(Omega+Anti-Omega)_(pT=3pTs)/2N(phi)_(pT=2pTs) N is the invariant yield.
ks(pTs) = N(Omega+Anti-Omega)_(pT=3pTs)/2N(phi)_(pT=2pTs) N is the invariant yield.
ks(pTs) = N(Omega+Anti-Omega)_(pT=3pTs)/2N(phi)_(pT=2pTs) N is the invariant yield.
ks(pTs) = N(Omega+Anti-Omega)_(pT=3pTs)/2N(phi)_(pT=2pTs) N is the invariant yield.
We present measurements of $\pi^-$ and $\pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $\sqrt{s_{_{\rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $\pi^-$ ($\pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $\sqrt{s_{_{\rm NN}}} = \text{27 GeV}$ and higher. At $\sqrt{s_{_{\rm NN}}} = \text{200 GeV}$, the slope of the difference of $v_2$ between $\pi^-$ and $\pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.
The distribution of observed charge asymmetry from STAR data.
Pion $v_2${2} as a function of observed charge asymmetry.
$v_2$ difference between $\pi^-$ and $\pi^+$ as a function of charge asymmetry with the tracking efficiency correction, for 30-40% central Au+Au collisions at 200 GeV. The errors are statistical only.
The slope parameter r as a function of centrality for collision energy of 200 GeV.
The slope parameter r as a function of centrality for collision energy of 62.4 GeV.
The slope parameter r as a function of centrality for collision energy of 39 GeV.
The slope parameter r as a function of centrality for collision energy of 27 GeV.
The slope parameter r as a function of centrality for collision energy of 19.6 GeV.
The slope parameter r as a function of centrality for collision energy of 11.5 GeV.
The slope parameter r as a function of centrality for collision energy of 7.7 GeV.
A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy-ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical $K\pi$, $p\pi$, and $Kp$ fluctuations as measured by the STAR experiment in central 0-5\% Au+Au collisions from center-of-mass collision energies $\rm \sqrt{s_{NN}}$ = 7.7 to 200 GeV are presented. The observable $\rm \nu_{dyn}$ was used to quantify the magnitude of the dynamical fluctuations in event-by-event measurements of the $K\pi$, $p\pi$, and $Kp$ pairs. The energy dependences of these fluctuations from central 0-5\% Au+Au collisions all demonstrate a smooth evolution with collision energy.
$p\pi$, Kp, and $K\pi$ fluctuations as a function of collision energy, expressed as $v_{dyn,p\pi}$, $v_{dyn,Kp}$, and $v_{dyn,K\pi}$ respectively. Shown are data from central (0-5%) Au+Au collisions at energies from $\sqrt{s_{\rm NN}}$ = 7.7 to 200 GeV from the STAR experiment.
Local parity-odd domains are theorized to form inside a Quark-Gluon-Plasma (QGP) which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect (CME). The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this paper, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy, and tends to vanish by 7.7 GeV. The implications of these results for the CME will be discussed.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 62.4 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 39 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 27 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 19.6 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 11.5 GeV.
The three-point correlator, $\gamma$, as a function of centrality for Au+Au collisions at 7.7.
The two-particle correlation as a function of centrality for Au+Au collisions at 62.4 GeV.
The two-particle correlation as a function of centrality for Au+Au collisions at 39 GeV.
The two-particle correlation as a function of centrality for Au+Au collisions at 27 GeV.
The two-particle correlation as a function of centrality for Au+Au collisions at 19.6 GeV.
The two-particle correlation as a function of centrality for Au+Au collisions at 11.5 GeV.
The two-particle correlation as a function of centrality for Au+Au collisions at 7.7 GeV.
$H_{SS}-H{OS}$, as a function of beam energy for 60-80% centrality in Au+Au collisions.
$H_{SS}-H{OS}$, as a function of beam energy for 30-60% centrality in Au+Au collisions.
$H_{SS}-H{OS}$, as a function of beam energy for 10-30% centrality in Au+Au collisions.
We report the beam energy (\sqrt s_{NN} = 7.7 - 200 GeV) and collision centrality dependence of the mean (M), standard deviation (\sigma), skewness (S), and kurtosis (\kappa) of the net-proton multiplicity distributions in Au+Au collisions. The measurements are carried out by the STAR experiment at midrapidity (|y| < 0.5) and within the transverse momentum range 0.4 < pT < 0.8 GeV/c in the first phase of the Beam Energy Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding the Quantum Chromodynamic (QCD) phase diagram. The products of the moments, S\sigma and \kappa\sigma^{2}, are sensitive to the correlation length of the hot and dense medium created in the collisions and are related to the ratios of baryon number susceptibilities of corresponding orders. The products of moments are found to have values significantly below the Skellam expectation and close to expectations based on independent proton and anti-proton production. The measurements are compared to a transport model calculation to understand the effect of acceptance and baryon number conservation, and also to a hadron resonance gas model.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=27$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=39$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=62.4$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
$\Delta N_p$ multiplicity distributions in Au+Au collisions at $\sqrt{S_{NN}}=200$ GeV for 0-5 percent, 30-40 percent and 70-80 percent collision centralities at midrapidity.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=27$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=39$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=62.4$ GeV.
Centrality dependence of the cumulants of $\Delta N_p$ distributions for Au+Au collisions at $\sqrt{S_{NN}}=200$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=7.7$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=11.5$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=19.6$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=27$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=39$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=62.4$ GeV.
Centrality dependence of $S\sigma$/Skellam and $\kappa\sigma^2$ for $\Delta N_p$ in Au+Au collisions at $\sqrt{S_{NN}}=200$ GeV.
Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.
Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.
Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.
Collision energy and centrality dependence of the net-proton $S\sigma$ and $\kappa\sigma^2$ from Au+Au and p+p collisions at RHIC.
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=7.7$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=11.5$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=19.6$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=27$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=39$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=62.4$ GeV. (efficiency corrected).
Cumulants of net-proton distribution at $\sqrt{S_{NN}}=200$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=7.7$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=11.5$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=19.6$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=27$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=39$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=62.4$ GeV. (efficiency corrected).
Cumulants of proton distribution at $\sqrt{S_{NN}}=200$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=7.7$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=11.5$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=19.6$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=27$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=39$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=62.4$ GeV. (efficiency corrected).
Cumulants of anti-proton distribution at $\sqrt{S_{NN}}=200$ GeV. (efficiency corrected).
Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($\pi^{\pm}$, $K^{\pm}$, $K_{s}^{0}$, $p$, $\bar{p}$, $\phi$, $\Lambda$, $\bar{\Lambda}$, $\Xi^{-}$, $\bar{\Xi}^{+}$, $\Omega^{-}$, $\bar{\Omega}^{+}$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $\sqrt{s_{NN}}$ (or increasing baryon chemical potential, $\mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $\pm$10%. The $v_{2}$ values for $\phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum, p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow,v_2, as a function of the transverse momentum,p_T, from 0–80% central Au+Au collisions for various particle species and energies.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected particles re plotted only for the transverse momentum range of 0.2< pT<1.6 GeV/c to emphasize the mass ordering at low p__T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2 (p_T), in 0–80% central Au+Au collisions for selected anti-particles are plotted only for the transverse momentum range of 0.2< p_T<1.6 GeV/c to emphasize the mass ordering at low p_T.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged pions as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged kaons as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of charged koans as a function of the transverse momentum,p_T,for 0–80% central Au+Au collisions. Different ∆v_2 ranges were used for the upper and lower panels.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of p, $\overline{p}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au. collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Lambda$ and $\overline{\Lambda}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $\Xi^{-}$ and $\overline{\Xi^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of $Omega^{-}$ and $\overline{\Omega^{+}}$ as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow,v_2, of $\phi$ mesons as a function of the transverse momentum, p_T, for 0–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 0–10% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow,v_2 of Λ,Λbar as a function of the transverse momentum, p_T,for 0–80% central Au+Au collisions
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 10–40% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow, v_2, of p and $\overline{p}$ as a function of the transverse momentum, p_T, for 40–80% central Au+Au collisions.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The elliptic flow,v_2, of 0–80% central Au+Au collisions as a function of the reduced transverse mass,$ m_T−m_0 $, for selected anti-particles.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of √sNN for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The difference in the v_2 values between a particle X and its corresponding anti-particle $\overline{X}$ as a function of $μ_B$ for 0–80% central Au+Au collisions.
The proton and anti-proton elliptic flow for 0–80% central Au+Au collisions at √sNN= 19.6 GeV, where “(+,-) EP” refers to the event plane reconstructed using all of the charged particles and “(-) EP” refers to the event plane reconstructed using only the negatively charged particles.
Elliptic flow ($v_{2}$) values for identified particles at mid-rapidity in Au+Au collisions, measured by the STAR experiment in the Beam Energy Scan at RHIC at $\sqrt{s_{NN}}=$ 7.7--62.4 GeV, are presented. A beam-energy dependent difference of the values of $v_{2}$ between particles and corresponding anti-particles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and anti-particles are not consistent with the universal number-of-constituent-quark (NCQ) scaling of $v_{2}$ that was observed at $\sqrt{s_{NN}}=$ 200 GeV.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The elliptic flow $v_{2}$ of protons and anti-protons as a function of the transverse momentum, $p_{T}$, for 0–80$\%$ central Au+Au collisions. The lower panels show the difference in $v_{2}(p_{T})$ between the particles and anti-particles. The solid curves are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
The difference in $v_{2}$ between particles $(X)$ and their corresponding anti-particles $(X)$ (see legend) as a function of $\sqrt(s_{NN})$ for 0–80$\%$ central Au+Au collisions. The dashed lines in the plot are fits with a power-law function. The error bars depict the combined statistical and systematic errors.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The upper panels depict the elliptic flow, $v_{2}$, as a function of reduced transverse mass, $(m_{T} − m_{0})$, for particles, frames a) and b), and anti-particles, frames c) and d), in 0-80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV. Simultaneous fits to the mesons except the pions are shown as the dashed lines. The difference of the baryon $v_{2}$ and the meson fits are shown in the lower panels.
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
The number-of-constituent quark scaled elliptic flow $(v_{2}/n_{q})((m_{T} − m_{0})/n_{q})$ for 0–80$\%$ central Au+Au collisions at $\sqrt{s_{NN}}$ = 11.5 and 62.4 GeV for selected particles, frames a) and b), and corresponding anti-particles, frames c) and d). The dashed lines are simultaneous fits [29] to all of the data sets at a given energy. The lower panels depict the ratios to the fits, while a $\pm10\%$ interval is shown as the shaded area to guide the eye. Some data points for $\varphi$ and $\Xi$ are out of the plot range in the lower panels of frames a) and c).
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.