An analysis of the production of a Higgs boson ($H$) in association with a top quark-antiquark pair ($\mathrm{t\bar{t}}H$) or a single top quark ($tH$) is presented. The Higgs boson decay into a bottom quark-antiquark pair ($H \to\mathrm{b\bar{b}}$) is targeted, and three different final states of the top quark decays are considered, defined by the number of leptons (electrons or muons) in the event. The analysis utilises proton-proton collision data collected at the CERN LHC with the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016-2018, which correspond to an integrated luminosity of 138 fb$^{-1}$. The observed $\mathrm{t\bar{t}}H$ production rate relative to the standard model expectation is 0.33 $\pm$ 0.26 = 0.33 $\pm$ 0.17 (stat) $\pm$ 0.21 (syst). Additionally, the $\mathrm{t\bar{t}}H$ production rate is determined in intervals of Higgs boson transverse momentum. An upper limit at 95% confidence level is set on the tH production rate of 14.6 times the standard model prediction, with an expectation of 19.3 $^{+9.2}_{-6.0}$. Finally, constraints are derived on the strength and structure of the coupling between the Higgs boson and the top quark from simultaneous extraction of the $\mathrm{t\bar{t}}H$ and $tH$ production rates, and the results are combined with those obtained in other Higgs boson decay channels.
Best fit results of the ttH signal-strength modifier in each channel, in each year, and in the combination of all channels and years. Uncertainties are correlated between the channels and years.
Likelihood-ratio test statistic as a function of the ttH strength modifiers $\mu_{ttH}$ and the $ttB$ background normalisation. The observed best fit point is $(\mu_{ttH}, ttB) = (0.33, 1.19)$.
Best fit results of the ttH signal-strength modifiers in the different Higgs pT bins of the STXS measurement.
The first measurement of the cross section for incoherent photonuclear production of J/$\psi$ vector mesons as a function of the Mandelstam $|t|$ variable is presented. The measurement was carried out with the ALICE detector at midrapidity, $|y|<0.8$, using ultra-peripheral collisions of Pb nuclei at a centre-of-mass energy per nucleon pair of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV. This rapidity interval corresponds to a Bjorken-$x$ range $(0.3-1.4)\times 10^{-3}$. Cross sections are given in five $|t|$ intervals in the range $0.04<|t|<1$ GeV$^2$ and compared to the predictions by different models. Models that ignore quantum fluctuations of the gluon density in the colliding hadron predict a $|t|$-dependence of the cross section much steeper than in data. The inclusion of such fluctuations in the same models provides a better description of the data.
|t|-dependence of incoherent J/Psi photonuclear production cross section in Pb-Pb UPCs measured at midrapidity, |y| < 0.8
The ALICE Collaboration reports three measurements in ultra-peripheral proton$-$lead collisions at forward rapidity. The exclusive two-photon process \ggmm and the exclusive photoproduction of J/$\psi$ are studied. J/$\psi$ photoproduction with proton dissociation is measured for the first time at a hadron collider. The cross section for the two-photon process of dimuons in the invariant mass range from 1 to 2.5 GeV/$c^2$ agrees with leading order quantum electrodynamics calculations. The exclusive and dissociative cross sections for J/$\psi$ photoproductions are measured for photon$-$proton centre-of-mass energies from 27 to 57 GeV. They are in good agreement with HERA results.
Differential cross sections DSIGMA/DM for exclusive GAMMA* GAMMA* to MU+ MU- production in p–Pb UPCs for each mass and rapidity interval
Exclusive J/psi photoproduction cross section in p-Pb UPC.
Dissociative J/psi photoproduction cross section in p-Pb UPC.
The measurement of the production of charm jets, identified by the presence of a ${\rm D^0}$ meson in the jet constituents, is presented in proton-proton collisions at centre-of-mass energies of $\sqrt{s}$ = 5.02 and 13 TeV with the ALICE detector at the CERN LHC. The ${\rm D^0}$ mesons were reconstructed from their hadronic decay ${\rm D^0} \rightarrow {\rm K^-}\pi^+$ and the respective charge conjugate. Jets were reconstructed from ${\rm D^0}$-meson candidates and charged particles using the anti-$k_{\rm T}$ algorithm, in the jet transverse momentum range $5<p_{\rm T;chjet}<50$ GeV/$c$, pseudorapidity $|\eta_{\rm jet}| <0.9-R$, and with the jet resolution parameters $R$ = 0.2, 0.4, 0.6. The distribution of the jet momentum fraction carried by a ${\rm D^0}$ meson along the jet axis ($z^{\rm ch}_{||}$) was measured in the range $0.4 < z^{\rm ch}_{||} < 1.0$ in four ranges of the jet transverse momentum. Comparisons of results for different collision energies and jet resolution parameters are also presented. The measurements are compared to predictions from Monte Carlo event generators based on leading-order and next-to-leading-order perturbative quantum chromodynamics calculations. A generally good description of the main features of the data is obtained in spite of a few discrepancies at low $p_{\rm T;chjet}$. Measurements were also done for $R = 0.3$ at $\sqrt{s}$ = 5.02 TeV and are shown along with their comparisons to theoretical predictions in an appendix to this paper.
$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=13$ TeV.
$p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons for $R=0.2$, $0.4$, and $0.6$ in pp collisions at $\sqrt{s}=5.02$ TeV.
Ratio of $p_{\mathrm{T,ch\ jet}}$-differential cross section of charm jets tagged with $\mathrm{D^{0}}$ mesons in pp collisions at $\sqrt{s}=13$ TeV to $\sqrt{s}=5.02$ TeV for $R=0.2$, $0.4$, and $0.6$.
The first measurement of the cross section for coherent J/$\psi$ photoproduction as a function of $|t|$, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb-Pb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{\rm NN}} = 5.02$ TeV with the J/$\psi$ produced in the central rapidity region $|y|<0.8$, which corresponds to the small Bjorken-$x$ range $(0.3-1.4) \times 10^{-3}$. The measured $|t|$-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky-Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-$x$.
t-dependence of coherent J/psi photonuclear production cross section in Pb-Pb UPC.
pT**2-dependence of coherent J/psi photoproduction cross section in Pb-Pb UPC.
The coherent photoproduction of $\rm{J/\psi}$ and $\rm{\psi'}$ mesons was measured in ultra-peripheral Pb-Pb collisions at a center-of-mass energy $\sqrt{s_{\mathrm{NN}}}~=~5.02$ TeV with the ALICE detector. Charmonia are detected in the central rapidity region for events where the hadronic interactions are strongly suppressed. The $\rm{J/\psi}$ is reconstructed using the dilepton ($l^{+} l^{-}$) and proton-antiproton decay channels, while for the $\rm{\psi'}$, the dilepton and the $l^{+} l^{-} \pi^{+} \pi^{-}$ decay channels are studied. The analysis is based on an event sample corresponding to an integrated luminosity of about 233 ${\mu b}^{-1}$. The results are compared with theoretical models for coherent $\rm{J/\psi}$ and $\rm{\psi'}$ photoproduction. The coherent cross section is found to be in a good agreement with models incorporating moderate nuclear gluon shadowing of about 0.65 at a Bjorken-$x$ of around $6\times 10^{-4}$, such as the EPS09 parametrization, however none of the models is able to fully describe the rapidity dependence of the coherent $\rm{J/\psi}$ cross section including ALICE measurements at forward rapidity. The ratio of $\rm{\psi'}$ to $\rm{J/\psi}$ coherent photoproduction cross sections was also measured and found to be consistent with the one for photoproduction off protons.
Measured differential cross section of coherent J/Psi photoproduction in Pb–Pb UPCs in |y|<0.8. The points show the measurements for different decay channels.
Measured differential cross section of coherent Psi(2S) photoproduction in Pb–Pb UPCs in |y|<0.8. The points show the measurements for different decay channels.
Measured rapidity differential cross section of coherent J/Psi photoproduction in Pb–Pb UPCs events.
This paper presents a measurement of the W^+W^- production cross section in pp collisions at sqrt{s}=7 TeV. The leptonic decay channels are analyzed using data corresponding to an integrated 4.6 fb-1 collected with the ATLAS detector at the Large Hadron Collider. The W^+W^- production cross section sigma(pp -> W^+W^-+X) is measured to be 51.9 +- 2.0 (stat) +- 3.9 (syst) +- 2.0 (lumi) pb, compatible with the Standard Model prediction of 44.7 +2.1 -1.9 pb. A measurement of the normalized fiducial cross section as a function of the leading lepton transverse momentum is also presented. The reconstructed transverse momentum distribution of the leading lepton is used to extract limits on anomalous WWZ and WWgamma couplings.
The measured fiducial cross section in the three channels . The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.
The measured total cross section in the three channels. The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.
The measured total cross section (combined). The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.
Measurements are presented of differential cross-sections for top quark pair production in pp collisions at sqrt(s) = 7 TeV relative to the total inclusive top quark pair production cross-section. A data sample of 2.05/fb recorded by the ATLAS detector at the Large Hadron Collider is used. Relative differential cross-sections are derived as a function of the invariant mass, the transverse momentum and the rapidity of the top quark pair system. Events are selected in the lepton (electron or muon) + jets channel. The background-subtracted differential distributions are corrected for detector effects, normalized to the total inclusive top quark pair production cross-section and compared to theoretical predictions. The measurement uncertainties range typically between 10% and 20% and are generally dominated by systematic effects. No significant deviations from the Standard Model expectations are observed.
Relative differential cross-section (1/SIG)*D(SIG)/DM(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
Relative differential cross-section (1/SIG)*D(SIG)/DPT(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
Relative differential cross-section (1/SIG)*D(SIG)/DYRAP(ttbar) measured in the e+jets, mu+jets and the combined lepton+jets channel.
A measurement of the cross section for the production of an isolated photon in association with jets in proton-proton collisions at a center-of-mass energy $\sqrt{s}$ = 7 TeV is presented. Photons are reconstructed in the pseudorapidity range $|\eta^{\gamma}| \lt 1.37$ and with a transverse energy $E_T^\gamma$ > 25 GeV. Jets are reconstructed in the rapidity range $|y^{jet}|$ < 4.4 and with a transverse momentum $p_T^{jet}$ > 20 GeV. The differential cross section $d\sigma/dE_T^\gamma$ is measured, as a function of the photon transverse energy, for three different rapidity ranges of the leading-$p_T$ jet: $|y^{jet}| < 1.2, 1.2 \le |y^{jet}|$ < 2.8 and 2.8 $\le |y^{jet}|$ < 4.4. For each rapidity configuration the same-sign $(\eta^{\gamma}y^{jet}\ge 0)$ and opposite-sign $(\eta^{\gamma}y^{jet}<0)$ cases are studied separately. The results are based on an integrated luminosity of 37 pb$^{-1}$, collected with the ATLAS detector at the LHC. Next-to-leading order perturbative QCD calculations are found to be in fair agreement with the data, except for $E_T^{\gamma} \lt 45$ GeV, where the theoretical predictions overestimate the measured cross sections.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, |y(jet)|<1.2, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 1.2<=|y(jet)|<2.8, eta(gamma)*y(jet)>=0.
The measured cross section as a function of the photon transverse energy, ET, for pT(jet)>20 GeV, |eta(gamma)|<1.37, 2.8<=|y(jet)|<4.4, eta(gamma)*y(jet)>=0.
Results are presented on the production of jets of particles in association with a Z/gamma* boson, in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb^-1. Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.
Cross section for Inclusive Jet Multiplicity corrected to the lepton common fiducial region and for QED radiation effects.
Ratio of cross sections for N/N-1 inclusive jet multiplicities corrected to the lepton common fiducial region and for QED radiation effects.
Inclusive jet differential cross section dsigma/dpt corrected to the lepton common fiducial region and for QED radiation effects.