Date

Study of t anti-t production p anti-p collisions using total transverse energy

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 75 (1995) 3997, 1995.
Inspire Record 396003 DOI 10.17182/hepdata.42358

We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.

1 data table

A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).


W and Z boson production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1456-1461, 1995.
Inspire Record 395459 DOI 10.17182/hepdata.42368

The inclusive cross sections times leptonic branching ratios for W and Z boson production in PbarP collisions at Sqrt(s)=1.8 TeV were measured using the D0 detector at the Fermilab Tevatron collider: Sigma_W*B(W->e, nu) = 2.36 +/- 0.07 +/- 0.13 nb, Sigma_W*B(W->mu,nu) = 2.09 +/- 0.23 +/- 0.11 nb, Sigma_Z*B(Z-> e, e) = 0.218 +/- 0.011 +/- 0.012 nb, Sigma_Z*B(Z->mu,mu) = 0.178 +/- 0.030 +/- 0.009 nb. The first error is the combined statistical and systematic uncertainty, and the second reflects the uncertainty in the luminosity. For the combined electron and muon analyses we find: [Sigma_W*B(W->l,nu)]/[Sigma_Z*B(Z->l,l)] = 10.90 +/- 0.49. Assuming Standard Model couplings, this result is used to determine the width of the W boson: Gamma(W) = 2.044 +/- 0.093 GeV.

1 data table

The second DSYS error is due to luminosity.


Study of Charged Hadronic Four-Body Decays of the $D^0$ Meson

The E687 collaboration Frabetti, P.L. ; Cheung, H.W.K. ; Cumalat, John P. ; et al.
Phys.Lett.B 354 (1995) 486-493, 1995.
Inspire Record 395966 DOI 10.17182/hepdata.21354

Charged hadronic four-body decays of D 0 mesons have been studied in the E687 photoproduction experiment at Fermilab. Branching ratios relative to the D 0 → K − π + π + π − decay mode for the Cabibbo-suppressed decays D 0 → π − π + π − π + , D 0 → K − K + π − π + have been measured and the first evidence of the D 0 → K − K + K − π + decay mode is reported. An analysis of the D 0 → K − K + π − π + resonance structure is also presented.

3 data tables

No description provided.

No description provided.

No description provided.


Study of D*+ and search for D**0 production by neutrinos in BEBC

The Big Bubble Chamber Neutrino collaboration Asratvan, A.E. ; Aderholz, M. ; Ammosov, V.V. ; et al.
Z.Phys.C 68 (1995) 43-46, 1995.
Inspire Record 395454 DOI 10.17182/hepdata.47928

Data from BEBC experiments are combined to provide large statistics for neutrino interactions. ChargedD* mesons are produced in (1.22±0.25)% of neutrino and (1.01±0.31)% of antineutrino charged current interactions. The mean fraction of the hadronic laboratory energy taken by theD*+ in these events is 0.59±0.03±0.08. Less than 18% of all chargedD* mesons from (anti)neutrino interactions are found to be daughters ofD**0 (at the 90% confidence level).

4 data tables

Mean fractional hadronic energy carried by the D*+- in the laboratory system.

Mean value of the Bjorken scaling variable X.

Rate of charged D* meson production per charged current neutrino interaction.

More…

A Study of the strong coupling constant using W + jets processes

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3226-3231, 1995.
Inspire Record 394610 DOI 10.17182/hepdata.42454

The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992–93 Tevatron Collider run. For the W→eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065±0.003stat±0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

1 data table

Two values of ALPHA_S corresponds the two different parton distribution functions (pdf) used in extraction of ALPHA_S from the ratio. The dominant systematic error is from the jet energy scale uncertainty.


Total cross-section measurements for muon-neutrino, anti-muon-neutrino interactions in 3-GeV - 30-GeV energy range with IHEP-JINR neutrino detector

Anikeev, V.B. ; Belikov, S.V. ; Borisov, A.A. ; et al.
Z.Phys.C 70 (1996) 39-46, 1996.
Inspire Record 400486 DOI 10.17182/hepdata.40711

The results of total cross section measurements for theνμ,\(\bar \nu _\mu\) interactions with isoscalar target in the 3 – 30 GeV energy range have been presented. The data were obtained with the IHEP-JINR Neutrino Detector in the “natural” neutrino beams of the U-70 accelerator. Neutrino fluxes were obtained by averaging the spectra, based on the calculations with the use of the experimental data on secondary particle yields from the target and muon fluxes measurements in 9 gaps of the muon filter, as well as the spectra determined from quasi-elastic events and spectra defined by extrapolating differential distributiondσ/dy in the regiony=0. The significant deviation from the linear dependence forσtot versus neutrino energy is determined in the energy range less than 15 GeV.

2 data tables

No description provided.

No description provided.


Measurement of the Z Z gamma and Z gamma gamma couplings in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 1028, 1995.
Inspire Record 394245 DOI 10.17182/hepdata.42374

We have directly measured the ZZ-gamma and Z-gamma-gamma couplings by studying p pbar --> l+ l- gamma + X, (l = e, mu) events at the CM energy of 1.8$TeV with the D0 detector at the Fermilab Tevatron Collider. A fit to the transverse energy spectrum of the photon in the signal events, based on the data set corresponding to an integrated luminosity of 13.9 pb~-1 ($13.3 pb~-1) for the electron (muon) channel, yields the following 95% confidence level limits on the anomalous CP-conserving ZZ-gamma couplings: -1.9 < h~Z_30 < 1.8 (h~Z_40 = 0), and -0.5 < h~Z_40 < 0.5 (h~Z_30 = 0), for a form-factor scale Lambda = 500 GeV. Limits for the Z-gamma-gamma$ couplings and CP-violating couplings are also discussed.

1 data table

The anomalous CP-conserving Z Z GAMMA. CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.


Observation of the top quark

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 74 (1995) 2632-2637, 1995.
Inspire Record 393099 DOI 10.17182/hepdata.42452

The DO collaboration reports on a search for the Standard Model top quark in pbar-p collisions at Sqrt(s)=1.8TeV at the Fermilab Tevatron, with an integrated luminosity of approximately 50pb-1. We have searched for t-tbar production in the dilepton and single-lepton decay channels, with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2.0E-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measure its mass to be 199~+19_21 (stat.)+/- 22 (syst.)GeV/c**2 and its production cross section to be 6.4 +/- 2.2 pb.

1 data table

Cross section refers to top quark mass equal 199. (+19, -21, +- 22) GeV.


Observation of top quark production in anti-p p collisions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 74 (1995) 2626-2631, 1995.
Inspire Record 393084 DOI 10.17182/hepdata.42453

We establish the existence of the top quark using a 67 pb^-1 data sample of Pbar-P collisions at Sqrt(s) = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar to those we previously published, we observe a signal consistent with t-tbar decay to WW b-bbar, but inconsistent with the background prediction by 4.8 sigma. Additional evidence for the top quark is provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be 176 +/-8(stat) +/- 10(sys.) GeV/c^2, and the t-tbar production cross section to be 6.8 +3.6 -2.4 pb.

1 data table

Cross section refers to top quark mass equal 176. (+- 8 +- 10) GeV.. Error contains both statistical and systematic uncertainty.


Rescattering probed by the emission of slow target associated particles in high-energy heavy ion interactions

The EMU01 collaboration Adamovich, M.I ; Aggarwal, M.M ; Alexandrov, Y.A ; et al.
Phys.Lett.B 363 (1995) 230-236, 1995.
Inspire Record 406952 DOI 10.17182/hepdata.28438

In this letter the distribution of slow target associated particles emitted in Au + Emulsion interactions at 11.6 A GeV/ c is studied. The three models RQMD, FRITIOF and VENUS are used for comparisons and especially their treatment of rescattering is investigated.

6 data tables

No description provided.

PROJECTILE ASSOCIATED HE-FRAGMENTS.

No description provided.

More…