Polarization parameter in elastic proton proton scattering from 0.75-GeV to 2.84-GeV

Neal, Homer A. ; Longo, Michael J. ;
Phys.Rev. 161 (1967) 1374-1383, 1967.
Inspire Record 51386 DOI 10.17182/hepdata.6264

The polarization parameter in elastic proton-proton scattering has been measured at 0.75, 1.03, 1.32, 1.63, 2.24, and 2.84 GeV by employing a double-scattering technique. An external proton beam from the Brookhaven Cosmotron was focused on a 3 in.-long liquid-hydrogen target and the elastic recoil and scattered protons were detected in coincidence by scintillation counters. The polarization of the recoil beam was determined from the azimuthal asymmetry exhibited in its scattering from a carbon target. This asymmetry was measured by a pair of scintillation-counter telescopes which symmetrically viewed the carbon target. The analyzing power of this system was previously determined in an independent calibration experiment employing a 40%-polarized proton beam at the Carnegie Institute of Technology synchrocyclotron. False asymmetries were cancelled to a high order by periodically rotating the analyzer 180° about the recoil beam line. Spark chambers were utilized to obtain the spatial distribution of the beam as it entered the analyzer; this information allowed an accurate determination of the corrections necessary to compensate for any misalignment of the axis of the analyzer relative to the incident-beam centroid. Values of the polarization parameter as a function of the center-of-mass scattering angle are given for each incident beam energy. The predictions of the Regge theory for polarization in elastic proton-proton scattering and recently published phase-shift solutions are compared with the experimental results. Surprisingly good agreement with the Regge predictions is found despite the low energies involved.

4 data tables

'ALL'.

No description provided.

No description provided.

More…

Proton-Proton Interactions at 5.5 GeV/c

Alexander, G. ; Benary, O. ; Czapek, G. ; et al.
Phys.Rev. 154 (1967) 1284-1304, 1967.
Inspire Record 52243 DOI 10.17182/hepdata.55119

This report is based on about 10 500 pp collision events produced in the 81-cm Saclay hydrogen bubble chamber at CERN. Cross-section values for the different identified final states and resonances are given. The isobars N*1238, N*1420, N*1518, N*1688, N*1920, and N*2360 were identified and their production cross-section values were found via a best-fit analysis of different invariant-mass histograms. About 70% of the isobars are connected with the quasi-two-body reactions pp→N*N and pp→N*N*. The reaction pp→nN*1238(pπ+) with a cross section of 3.25±0.16 mb was analyzed in terms of a peripheral absorption model, which was found to be in good agreement with the data. Various decay modes of the N*1518 and N*1688 isobars were observed and their branching ratios determined. The branching ratio of nπ+ to pπ+π− was found to be 0.77±0.45 for N*1518 and 0.67±0.40 for N*1688. The branching ratio of N*1238(pπ+)π− to pπ+π− of N*1688 was estimated to be 0.74±0.14. Pion production turned out to be mainly due to decay of isobars. Production of meson resonances turned out to be less important; the reaction pp→ppω0→ppπ+π−π0 was identified with a cross-section value of 0.11±0.02 mb. Finally, the production of neutral strange particles with a cross section of 0.45±0.04 mb is descussed. Strong formation of Y*1385 is observed.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Further Evidence for a Possible I=52 N* Resonance at 1580 MeV

Alexander, G. ; Benary, O. ; Reuter, B. ; et al.
Phys.Rev.Lett. 15 (1965) 207-210, 1965.
Inspire Record 944924 DOI 10.17182/hepdata.21831

None

1 data table

Axis error includes +- 0.0/0.0 contribution (?////Not given).


Total Cross Sections of Protons with Momentum Between 10 and 28 Gev/c

Ashmore, A. ; Cocconi, G. ; Diddens, A.N. ; et al.
Phys.Rev.Lett. 5 (1960) 576-578, 1960.
Inspire Record 944909 DOI 10.17182/hepdata.192

None

2 data tables

No description provided.

No description provided.


Elastic Proton-Proton Scattering at 2.24, 4.40, and 6.15 Bev

Cork, Bruce ; Wenzel, William A. ; Causey, Charles W. ;
Phys.Rev. 107 (1957) 859-867, 1957.
Inspire Record 944998 DOI 10.17182/hepdata.26883

Protons of the internal circulating beam of the Bevatron were scattered in a polyethylene target. Both scattered and recoil protons were detected by scintillation counters at angles which define elastic proton-proton events. An internal counter was located within a few inches of the beam to permit measurements at laboratory scattering angles as low as 2°. Absolute values are based on the calibration of the induction electrode that monitors the circulating beam. Total elastic cross sections obtained by integrating the differential spectra are 17, 10, and 8 mb at 2.24, 4.40, and 6.15 Bev, respectively. The experimental angular distributions are consistent with the prediction of a simple optical model with a complex index of refraction at short range.

1 data table

'ALL'.


p-p Interactions at 3 Bev

Cester, R. ; Hoang, T.F. ; Kernan, A. ;
Phys.Rev. 103 (1956) 1443-1449, 1956.
Inspire Record 945004 DOI 10.17182/hepdata.26958

Interactions initiated by 3-Bev protons of the Brookhaven Cosmotron were studied by photoemulsion technique. With appropriate criteria, 115 events are attributed to interactions of the incident beam protons with hydrogen nuclei (∼55%) and with bound protons of other nuclei (∼45%). A detailed analysis allowed the subdivision of the 115 events in categories, according to the number of π mesons (N>~0) produced in the collision. The ratio of elastic scattering to the total number of events was estimated to be σelσtotal=0.20−0.07+0.04. The observed cross section for pure elastic scattering is σel=8.9±1.0 mb. The percentages of single, double, triple, and quadruple π-meson production are respectively: 34−20+22; 35.6−23+20; 9.6−4+6; ∼1.0+3.5. Among the 20 most probable cases of single π-meson production—the estimated ratio of π+ to π0 is σπ+σπ0=5.3−1.4+0.3. The experimental results are not in agreement with the Fermi statistical-model theory (in particular the lower limit for the experimental ratio of triple to single production is given by σ3σ1>∼110 in contrast with the predicted ratio σ3σ1=167) but are not inconsistent with the Peaslee excited-state-model theory.

1 data table

No description provided.