Date

Measurement of the production cross section of the W boson in association with two b jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 92, 2017.
Inspire Record 1484162 DOI 10.17182/hepdata.76543

The production cross section of a W boson in association with two b jets is measured using a sample of proton-proton collisions at sqrt(s) = 8 TeV collected by the CMS experiment at the CERN LHC. The data sample corresponds to an integrated luminosity of 19.8 inverse femtobarns. The W bosons are reconstructed via their leptonic decays, W to l nu, where l = mu or e. The fiducial region studied contains exactly one lepton with transverse momentum pt[l] > 30 GeV and pseudorapidity abs(eta[l]) < 2.1, with exactly two b jets with pt > 25 GeV and abs(eta) < 2.4 and no other jets with pt > 25 GeV and abs(eta) < 4.7. The cross section is measured to be sigma(pp to W (l nu)+ bb-bar) = 0.64 +/- 0.03 (stat) +/- 0.10 (syst) +/- 0.06 (theo) +/- 0.02 (lumi) pb, in agreement with standard model predictions.

1 data table

Wbb production cross section in pb.


Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

The COMPASS collaboration Adolph, C. ; Agarwala, J. ; Aghasyan, M. ; et al.
Phys.Lett.B 767 (2017) 133-141, 2017.
Inspire Record 1483098 DOI 10.17182/hepdata.77892

Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 < Q2 < 60 (GeV/c)^2 in the photon virtuality, 0.004 < x < 0.4, 0.1 < y < 0.7, 0.20 < z < 0.85, and W > 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.

2 data tables

Multiplicities of positively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{+}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{+}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{+}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{+}}$, as follows: $M^{K^{+}}$ = $M_{raw}^{K^{+}}$ * $\frac{\eta^{K^{+}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{+}} } {DVM^{DIS} }$.

Multiplicities of negatively charged kaons from semi-inclusive deep-inelastic scattering of muons off an isoscalar target, $M^{K^{-}}$, in bins of $x$, $y$, and $z$. Also given are the diffractive vector meson correction to the kaon count, $DVM^{K^{-}}$, and DIS count, $DVM^{DIS}$, as well as the radiative correction factors to the kaon count, $\eta^{K^{-}}$, and DIS count, $\eta^{DIS}$. The correction factors were applied to the raw multiplicity to arrive at the final multiplicity given in the table, $M^{K^{-}}$, as follows: $M^{K^{-}}$ = $M_{raw}^{K^{-}}$ * $\frac{\eta^{K^{-}}} {\eta^{DIS}}$ * $\frac{ DVM^{K^{-}} } {DVM^{DIS} }$.


Upsilon production in U+U collisions at 193 GeV with the STAR experiment

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.C 94 (2016) 064904, 2016.
Inspire Record 1482939 DOI 10.17182/hepdata.98624

We present a measurement of the inclusive production of Upsilon mesons in U+U collisions at 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at 200 GeV show a suppression of Upsilon(1S+2S+3S) production relative to expectations from the Upsilon yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Upsilon(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Upsilon(1S+2S+3S) and Upsilon(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.

5 data tables

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to 200 GeV RHIC Au+Au (solid squares [13] and hollow crosses [32]), and 2.76 TeV LHC Pb+Pb data (solid diamonds [33]). A 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

(Color online) $\Upsilon$(1S+2S+3S) (a) and $\Upsilon$(1S) (b) $R_{AA}$ vs. $N_{part}$ in $\sqrt{s_{NN}}$ = 193 GeV U+U collisions (solid circles), compared to different models [36–38], described in the text. The 95% lower confidence bound is indicated for the 30-60% centrality U+U data (see text). Each point is plotted at the center of its bin. Centrality integrated (0-60%) U+U and Au+Au data are also shown as open circles and squares, respectively.

More…

Charge-dependent directed flow in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Rev.Lett. 118 (2017) 012301, 2017.
Inspire Record 1481225 DOI 10.17182/hepdata.77581

We present the first measurement of charge-dependent directed flow in Cu+Au collisions at $\sqrt{s_{_{NN}}}$ = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics (PHSD) model, which suggests that most of the electric charges, i.e. quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm/$c$.

16 data tables

$p_{\rm T}$ dependence of directed flow in centrality 10-20%.

$p_{\rm T}$ dependence of directed flow in centrality 20-30%.

$p_{\rm T}$ dependence of directed flow in centrality 30-40%.

More…

Measurement of the mass of the top quark in decays with a J/psi meson in pp collisions at 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 12 (2016) 123, 2016.
Inspire Record 1480862 DOI 10.17182/hepdata.75539

A first measurement of the top quark mass using the decay channel t to (W to l nu) (b to J/psi + X to mu+ mu- + X) is presented. The analysis uses events selected from the proton-proton collisions recorded with the CMS detector at the LHC at a center-of-mass energy of 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns, with 666 t t-bar and single top quark candidate events containing a reconstructed J/psi candidate decaying into an oppositely-charged muon pair. The mass of the (J/psi + l) system, where l is an electron or a muon from W boson decay, is used to extract a top quark mass of 173.5 +/- 3.0 (stat) +/- 0.9 (syst) GeV.

2 data tables

Number of selected events from simulations and observed in data. The uncertainties are statistical.

Summary of the impact of systematic uncertainties on the top quark mass according to the contributions from each source.


Measurement of the ZZ production cross section and Z to l+l-l'+l'- branching fraction in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 763 (2016) 280-303, 2016.
Inspire Record 1478600 DOI 10.17182/hepdata.75368

Four-lepton production in proton-proton collisions, pp to (Z/gamma*)(Z/gamma*) to l+l-l'+l'-, where l, l' = e or mu, is studied at a center-of-mass energy of 13 TeV with the CMS detector at the LHC. The data sample corresponds to an integrated luminosity of 2.6 inverse femtobarns. The ZZ production cross section, sigma(pp to ZZ) = 14.6 +1.9/-1.8 (stat) +0.5/-0.3 (syst) +/- 0.2 (theo) +/- 0.4 (lumi) pb, is measured for events with two opposite-sign, same-flavor lepton pairs produced in the mass region 60 < m[l+l-], m[l'+l'-] < 120 GeV. The Z boson branching fraction to four leptons is measured to be B(Z to l+l-l'+l'-) = 4.9 +0.8/-0.7 (stat) +0.3/-0.2 (syst) +0.2/-0.1 (theo) +/- 0.1 (lumi) x E-6 for the four-lepton invariant mass in the range 80 < m[l+l-l'+l'-] < 100 GeV and dilepton mass m[l+l-] > 4 GeV for all opposite-sign, same-flavor lepton pairs. The results are in agreement with standard model predictions.

5 data tables

The (P P to Z Z to l+l-l'+l'-) fiducial cross section. The first systematic uncertainty is detector systematics, the second is luminosity uncertainty. The theoretical prediction is POWHEG generated at NLO plus the gluon-gluon initial state contribution from MCFM, using NNPDF3.0 PDFs and scales mu_F = mu_R = 0.5m[l+l-l'+l'-].

The (P P to Z to l+l-l'+l'-) fiducial cross section. The first systematic uncertainty is detector systematics, the second is luminosity uncertainty. The theoretical prediction is POWHEG generated at NLO using NNPDF3.0 PDFs and scales mu_F = mu_R = m[l+l-l'+l'-].

The total (P P to Z) cross section times the (Z to l+l-l'+l'-) branching ratio. The first systematic uncertainty is detector systematics, the second is theoretical uncertainty, and the third is luminosity uncertainty.

More…

Energy dependence of $J/\psi$ production in Au+Au collisions at $\sqrt{s_{NN}} =$ 39, 62.4 and 200 GeV

The STAR collaboration Adamczyk, L. ; Adkins, J.K. ; Agakishiev, G. ; et al.
Phys.Lett.B 771 (2017) 13-20, 2017.
Inspire Record 1478040 DOI 10.17182/hepdata.104506

The inclusive $J/\psi$ transverse momentum ($p_{T}$) spectra and nuclear modification factors are reported at midrapidity ($|y|<1.0$) in Au+Au collisions at $\sqrt{s_{NN}}=$ 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of $J/\psi$ production, with respect to {\color{black}the production in $p+p$ scaled by the number of binary nucleon-nucleon collisions}, is observed in central Au+Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct $J/\psi$ production due to the color screening effect and $J/\psi$ regeneration from recombination of uncorrelated charm-anticharm quark pairs.

6 data tables

J/psi invariant yields in Au+Au collisions = 39 GeV as a function of pT for different centralities.

J/psi invariant yields in Au+Au collisions = 62.4 GeV as a function of pT for different centralities.

J/psi invariant yields in Au+Au collisions = 200 GeV as a function of pT for different centralities.

More…

Measurement of the WZ production cross section in pp collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Lett.B 766 (2017) 268-290, 2017.
Inspire Record 1477805 DOI 10.17182/hepdata.76739

The WZ production cross section in proton-proton collisions at sqrt(s) = 13 TeV is measured with the CMS experiment at the LHC using a data sample corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in the leptonic decay modes WZ to l nu l' l', where l, l'= e, mu. The measured cross section for the range 60 < m[l'l'] < 120 GeV is sigma(pp to WZ) = 39.9 +/- 3.2 (stat) +2.9/-3.1 (syst) +/- 0.4 (theo) +/- 1.3 (lumi) pb, consistent with the standard model prediction.

2 data tables

The fiducial pp to WZ to lnul'l' cross section. The first systematic uncertainty is detector systematics and the second is luminosity uncertainty. The theoretical prediction is calculated with MCFM at NLO with NNPDF3.0 PDFs, with dynamic renormalization and factorization scales set to muR = muF = m[WZ]. The uncertainty is obtained by varying the factorization and renormalization scales independently up and down by a factor of two with the condition that 0.5 < muR/muF < 2.

The total pp to WZ cross section. The first systematic uncertainty is detector systematics and the second is luminosity uncertainty. The first theoretical prediction is calculated with MCFM at NLO with NNPDF3.0 PDFs, with dynamic renormalization and factorization scales set to muR = muF = m[WZ]. The second theoretical prediction is calculated with MATRIX at NNLO with fixed QCD scales set to muR = muF = 1/2 (m[Z] + m[W]) and with NNPDF3.0 PDFs. The uncertainty is obtained by varying the factorization and renormalization scales independently up and down by a factor of two with the condition that 0.5 < muR/muF < 2.


Measurement of electroweak production of a W boson and two forward jets in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 11 (2016) 147, 2016.
Inspire Record 1477806 DOI 10.17182/hepdata.76993

A measurement is presented of the cross section for the electroweak production of a W boson in association with two jets in proton-proton collisions at a center-of-mass energy of 8 TeV. The data set was collected with the CMS detector and corresponds to an integrated luminosity of 19.3 inverse femtobarns. The measured fiducial cross section for W bosons decaying to electrons or muons and for pT(j1) > 60 GeV, pT(j2) > 50 GeV, |eta(j)| < 4.7, and m(jj) > 1000 GeV is 0.42 +/- 0.04 (stat) +/- 0.09 (syst) +/- 0.01 (lumi) pb. This result is consistent with the standard model leading-order prediction of 0.50 +/- 0.02 (scale) +/- 0.02 (PDF) pb obtained with MADGRAPH5_aMC@NLO 2.1 interfaced to PYTHIA 6.4. This is the first cross section measurement for this process.

1 data table

The measured values for the EW W(-->env, munv)+2-jets fiducial cross section.


π−+p→π0+n Charge-Exchange Scattering at High Energies

Mannelli, I. ; Bigi, A. ; Carrara, R. ; et al.
Phys.Rev.Lett. 14 (1965) 408, 1965.
Inspire Record 1474811 DOI 10.17182/hepdata.75497

Phys. Rev. Lett. 14, 408 (1965)

6 data tables

No description provided.

No description provided.

No description provided.

More…