We present a measurement of the pseudorapidity density of primary charged particles near mid-rapidity in Au+Au collisions at sqrt(s_NN) = 130 GeV as a function of the number of participating nucleons. These results are compared to models in an attempt to discriminate between competing scenarios of particle production in heavy ion collisions.
For each measured centrality bin, based on percentile of the total cross-section, we show $dNch/d\eta|_{|\eta|<1}$, the midrapidity charged particle density per unit of pseudorapidity, $\langle N_{part}\rangle$ , the average number of nucleons participating in the collision in the given centrality range, and the final result for $dNch/d\eta|_{|\eta|<1}/( \frac{1}{2}\langle N_{part}\rangle )$, including the full error estimation.
Measurements of the A dependence and pseudorapidity interval (δη) dependence of midrapidity ET distributions in a half-azimuth (Δφ=π) electromagnetic calorimeter are presented for p+Be, p+Au, O+Cu, Si+Au, and Au+Au collisions at the BNL-AGS (Alternating-Gradient Synchrotron). The shapes of the upper edges of midrapidity ET distributions as a function of the pseudorapidity interval δη in the range 0.3 to 1.3, roughly centered at midrapidity, are observed to vary with δη, like multiplicity—the upper edges of the distributions flatten as δη is reduced. At the typical fixed upper percentiles of ET distributions used for nuclear geometry characterization by centrality definition—7 percentile, 4 percentile, 2 percentile, 1 percentile, 0.5 percentile—the effect of this variation in shape on the measured projectile Ap dependence for 16O, 28Si, 197Au projectiles on an Au target is small for the ranges of δη and percentile examined. The ET distributions for p+Au and p+Be change in shape with δη; but in each δη interval the shapes of the p+Au and p+Be distributions remain indentical with each other—a striking confirmation of the absence of multiple-collision effects at midrapidity at AGS energies. The validity of the nuclear geometry characterization versus δη is illustrated by plots of the ET(δη) distribution in each δη interval in units of the measured 〈ET(δη)〉p+Au in the same δη interval for p+Au collisions. These plots, in the physically meaningful units of “number of average p+Au collisions,” are nearly universal as a function of δη, confirming that the reaction dynamics for ET production at midrapidity at AGS energies is governed by the number of projectile participants and can be well characterized by measurements in apertures as small as Δφ=π, δη=0.3.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.22 < ETARAP < 2.5, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.38 < ETARAP < 2.34, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
ET is defined as the sum of Ei*Sin(THETAi) taken over all particles emittedon an event. The full ETARAP acceptance of the half-azimuth calorimeter, 1.54 < ETARAP < 2.18, is subdivided into eight nominally equal bins of 0.16 in pseudorapidity.
The first measurement of energy produced transverse to the beam direction at RHIC is presented. The mid-rapidity transverse energy density per participating nucleon rises steadily with the number of participants, closely paralleling the rise in charged-particle density, such that E_T / N_ch remains relatively constant as a function of centrality. The energy density calculated via Bjorken's prescription for the 2% most central Au+Au collisions at sqrt(s_NN)=130 GeV is at least epsilon_Bj = 4.6 GeV/fm^3 which is a factor of 1.6 larger than found at sqrt(s_NN)=17.2 GeV (Pb+Pb at CERN).
130 GeV is sqrt(S) per nucleon-nucleon collision. The statistical errors are negligible and only systematic errors are quoted. COL(NAME=CENTRALITY) is centrality.
In an effort to better determine the 7Be(p,gamma)8B reaction rate, we have performed inclusive and exclusive measurements of the Coulomb dissociation of 8B. The former was a study of longitudinal momentum distributions of 7Be fragments emitted in the Coulomb breakup of intermediate energy 8B beams on Pb and Ag targets. Analysis of these data yielded the E2 contribution to the breakup cross section. In the exclusive measurement, we determined the cross section for the Coulomb breakup of 8B on Pb at low relative energies in order to infer the astrophysical S factor for the 7Be(p,gamma)8B reaction. Interpreting the measurements with 1st-order perturbation theory, we obtained SE2/SE1 = 4.7 (+ 2.0,- 1.3) times 10^-4 at Erel = 0.6 MeV, and S17(0) = 17.8 (+ 1.4,- 1.2) eV b. Semiclassical 1st-order perturbation theory and fully quantum mechanical continuum-discretized coupled channels analyses yield nearly identical results for the E1 strength relevant to solar neutrino flux calculations, suggesting that theoretical reaction mechanism uncertainties need not limit the precision of Coulomb breakup determinations of the 7Be(p,gamma)8B S factor. A recommended value of S17(0) based on a weighted average of this and other measurements is presented.
Integrated Coulomb dissociation cross section.
S17(0) = E * SIG * EXP(CONST(C=ZOMMERFELD PARAMETER)). CONST(C=ZOMMERFELD PARAMETER) = 31.29*Z1*Z2*SQRT(M/E), where Z1 and Z2 arethe nuclear charges of the interacting particles, M is the reduced mass, E is the center-of-mass energy.
Cross sections for production of 6He, 6Li, 7Li, and 7Be in the alpha+alpha reaction were measured at bombarding energies of 159.3, 279.6, and 619.8 MeV, and are found to decrease rapidly with increasing energy. These cross sections are essential for the calculation of the rate of nucleosynthesis of the lithium isotopes in the cosmic rays and thereby play a key role in our understanding of the synthesis of Li, Be, and B. The results for 6Li differ significantly from the tabulated values commonly used in cosmic-ray production calculations and lead to lower production of 6Li.
No description provided.
Upper limits are at one standard deviation level.
The errors include an 8pct systematic uncertainty, added in quadrature. LI6 nuclei in ground state + 3.56 mev level.
We have measured the ratios of antiparticles to particles for charged pions, kaons and protons near mid-rapidity in central Au+Au collisions at sqrt(s_NN) = 130 GeV. For protons, we observe pbar/p = 0.60 +/- 0.04 (stat.) +/- 0.06 (syst.) in the transverse momentum range 0.15 < p_T < 1.0 GeV/c. This leads to an estimate of the baryo-chemical potential mu_B of 45 MeV, a factor of 5-6 smaller than in central Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV.
130 GeV is sqrt(S) per nucleon-nucleon collision.
The NuTeV experiment at Fermilab has used a sign-selected neutrino beam to perform a search for the lepton number violating process $\bar{\nu}_mu e^- \to \mu^- \bar{\nu}_e$, and to measure the cross-section of the Standard Model inverse muon decay process $\nu_{\mu} e^- \to \mu^- \nu_e$. NuTeV measures the inverse muon decay asymptotic cross-section $\sigma/E$ to be 13.8 $\pm$ 1.2 $\pm$ 1.4 x $10^{-42} cm^2$/GeV. The experiment also observes no evidence for lepton number violation and places one of the most restrictive limits on the LNV/IMD cross-section ratio at $\sigma (\bar{\nu}_{\mu} e^- \to \mu^- \bar{\nu}_e) /\sigma (\nu_{\mu}e^- \to \mu^- \nu_e$) $\le$ 1.7% at 90% C.L. for V-A couplings and $\le$ 0.6% for scalar couplings.
No description provided.
No description provided.
We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at $\rts = 130$ GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of $|y|<0.5$ and 0.4 $<p_t<$ 1.0 GeV/$c$, the ratio is essentially independent of either transverse momentum or rapidity, with an average of $0.65\pm 0.01_{\rm (stat.)} \pm 0.07_{\rm (syst.)}$ for minimum bias collisions. Within errors, no strong centrality dependence is observed. The results indicate that at this RHIC energy, although the $p$-$\pb$ pair production becomes important at mid-rapidity, a significant excess of baryons over anti-baryons is still present.
pbar over p ratio vs. pt
pbar over p ratio vs. rapidity (y)
pbar over p ratio vs. centrality $(n_{ch}/n_{max})$
Measurements, with the BRAHMS detector, of the antiproton to proton ratio at central and forward rapidities are presented for Au+Au reactions at sqrt{s_{NN}}=130 GeV, and for three different collision centralities. For collisions in the 0-40% centrality range we find $N(\bar{{\rm p}})/N({\rm p}) = 0.64 +- 0.04 (stat.) +- 0.06 (syst.) at y ~0, 0.66 +- 0.03 +- 0.06 at y ~ 0.7, and 0.41 +- 0.04 +- 0.06 at y ~ 2. The ratios are found to be nearly independent of collision centrality and transverse momentum. The measurements demonstrate that the antiproton and proton rapidity densities vary differently with rapidity, and indicate that a net-baryon free midrapidity plateau (Bjorken limit) is not reached at this RHIC energy.
$\overline{\mathrm{p}}/\mathrm{p}$ versus $\mathrm{Centrality}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
$\overline{\mathrm{p}}/\mathrm{p}$ versus $p_{\mathrm{T}}$ for $\overline{\mathrm{p}}$, $\mathrm{p}$ in $\mathrm{Au}-\mathrm{Au}$ at $\sqrt{s_{\mathrm{NN}}}=130\,\mathrm{Ge\!V}$
We report the first measurement of the neutron electric form factor $G_E^n$ via $\vec{d}(\vec{e},e'n)p$ using a solid polarized target. $G_E^n$ was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, $^{15}$ND$_3$. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find $G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.)$ at $Q^2 = 0.495$ (GeV/c)$^2$.
No description provided.