The yield of charged particles associated with high-$p_{\rm T}$ trigger particles ($8 < p_{\rm T} < 15$ GeV/$c$) is measured with the ALICE detector in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV relative to proton-proton collisions at the same energy. The conditional per-trigger yields are extracted from the narrow jet-like correlation peaks in azimuthal di-hadron correlations. In the 5% most central collisions, we observe that the yield of associated charged particles with transverse momenta $p_{\rm T}> 3$ GeV/$c$ on the away-side drops to about 60% of that observed in pp collisions, while on the near-side a moderate enhancement of 20-30% is found.
The ratio of near-side yields in Lead-Lead/Proton-Proton collisions in the central region.
The ratio of near-side yields in Lead-Lead/Proton-Proton collisions in the peripheral region.
The ratio of away-side yields in Lead-Lead/Proton-Proton collisions in the central region.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Two-particle azimuthal ($\Delta\phi$) and pseudorapidity ($\Delta\eta$) correlations using a trigger particle with large transverse momentum ($p_T$) in $d$+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV and 200~GeV from the STAR experiment at RHIC are presented. The \ns correlation is separated into a jet-like component, narrow in both $\Delta\phi$ and $\Delta\eta$, and the ridge, narrow in $\Delta\phi$ but broad in $\Delta\eta$. Both components are studied as a function of collision centrality, and the jet-like correlation is studied as a function of the trigger and associated $p_T$. The behavior of the jet-like component is remarkably consistent for different collision systems, suggesting it is produced by fragmentation. The width of the jet-like correlation is found to increase with the system size. The ridge, previously observed in Au+Au collisions at $\sqrt{s_{{NN}}}$ = 200 GeV, is also found in Cu+Cu collisions and in collisions at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV, but is found to be substantially smaller at $\sqrt{s_{{NN}}}$ =\xspace 62.4 GeV than at $\sqrt{s_{{NN}}}$ = 200 GeV for the same average number of participants ($ \langle N_{\mathrm{part}}\rangle$). Measurements of the ridge are compared to models.
Parameterizations of the transverse momentum dependence of the reconstruction efficiency of charged particles in the TPC in various collision systems, energies and centrality bins for the track selection cuts used in this analysis.
The raw correlation in $\Delta\eta$ for di-hadron correlations for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-12% central \Au collisions for $|\Delta\phi|<$ 0.78 before and after the track merging correction is applied. The data have been reflected about $\Delta\eta$=0.
Sample correlations in $\Delta\eta$ ($|\Delta\phi|<$ 0.78) for 3 $<$ $p_T^{trigger}$ $<$ 6 GeV/$c$ and 1.5 GeV/$c$ $<$ $p_T^{associated}$ $<$ $p_T^{trigger}$ for 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-80% Au+Au at $\sqrt{s_{NN}}$ = 62.4 GeV, 0-95% $d$+Au at $\sqrt{s_{NN}}$ = 200 GeV, 0-60% Cu+Cu at $\sqrt{s_{NN}}$ = 200 GeV, 40-80% Au+Au at $\sqrt{s_{NN}}$ = 200 GeV, and 0-12% central Au+Au at $\sqrt{s_{NN}}$ = 200 GeV. The data are averaged between positive and negative $\Delta\eta$. 5% systematic uncertainty due to track reconstruction efficiency not listed below.
Angular correlations between unidentified charged trigger ($t$) and associated ($a$) particles are measured by the ALICE experiment in Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV for transverse momenta $0.25 < p_{T}^{t,\, a} < 15$ GeV/$c$, where $p_{T}^t > p_{T}^a$. The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval $|\eta| < 1.0$. Distributions in relative azimuth $\Delta\phi \equiv \phi^t - \phi^a$ are analyzed for $|\Delta\eta| \equiv |\eta^t - \eta^a| > 0.8$, and are referred to as "long-range correlations". Fourier components $V_{n\Delta} \equiv \langle \cos(n\Delta\phi)\rangle$ are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, then the pair anisotropy $V_{n\Delta}(p_{T}^t, p_{T}^a)$ is fully described in terms of single-particle anisotropies $v_n (p_{T})$ as $V_{n\Delta}(p_{T}^t, p_{T}^a) = v_n(p_{T}^t) \, v_n(p_{T}^a)$. This expectation is tested for $1 \leq n \leq 5$ by applying a global fit of all $V_{n\Delta} (p_{T}^t, p_{T}^a)$ to obtain the best values $v_{n}\{GF\} (p_{T})$. It is found that for $2 \leq n \leq 5$, the fit agrees well with data up to $p_T^a \sim 3$-4 GeV/$c$, with a trend of increasing deviation as $p_{T}^t$ and $p_{T}^a$ are increased or as collisions become more peripheral. This suggests that no pair correlation harmonic can be described over the full $0.25 < p_{T} < 15$ GeV/$c$ range using a single $v_n(p_T)$ curve; such a description is however approximately possible for $2 \leq n \leq 5$ when $p_T^a < 4$ GeV/$c$. For the $n=1$ harmonic, however, a single $v_1(p_T$ curve is not obtained even within the reduced range $p_T^a < 4$ GeV/$c$.
Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 2-2.5 GeV and associated particles in the range 1.5-2.0 GeV for two centrality classes 0-2% and 2-10%. Note that in the paper the data are plotted multiplied by 100.
Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 2-2.5 GeV and associated particles in the range 1.5-2.0 GeV for three centrality classes 10-20%, 20-30% and 40-50%. Note that in the paper the data are plotted multiplied by 100.
Amplitudes of the VnDelta harmonics versus n for events with trigger particles having transverse momenta in the range 8-15 GeV and associated particles in the range 6-8 GeV for two centrality classes 40-50% and 0-20%. Note that in the paper the data are plotted multiplied by 100.
The production of $J/\psi$ pairs in proton-proton collisions at a centre-of-mass energy of 7 TeV has been observed using an integrated luminosity of $37.5 pb^{-1}$ collected with the LHCb detector. The production cross-section for pairs with both \jpsi in the rapidity range $2<y^{J/\psi}<4.5$ and transverse momentum $p_{T}^{J/\psi}<10 GeV/c$ is $$ \sigma^{J/\psi J/\psi} = 5.1\pm1.0\pm1.1 nb,$$ where the first uncertainty is statistical and the second systematic.
Total production cross section for J/PSI pairs.
Differential production cross section for J/PSI pairs as a function of the invariant mass of the J/PSI-J/PSI system. Data read from plot with statistical errors only.
A measurement of the differential cross section for the inclusive production of isolated prompt photons in proton-proton collisions at a centre-of-mass energy of 7 TeV is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS detector at the LHC. The measurement covers the pseudorapidity range |eta|<2.5 and the transverse energy range 25 < ET < 400 GeV, corresponding to the kinematic region 0.007 < xT < 0.114. Photon candidates are identified with two complementary methods, one based on photon conversions in the silicon tracker and the other on isolated energy deposits in the electromagnetic calorimeter. The measured cross section is presented as a function of ET in four pseudorapidity regions. The next-to-leading-order perturbative QCD calculations are consistent with the measured cross section.
The measured prompt photon production spectra in the two |eta| regions, 0.0-0.9 and 0.9-1.44.
The measured prompt photon production spectra in the two |eta| regions, 1.57-2.1 and 2.1-2.5.
The Drell-Yan differential cross section is measured in pp collisions at sqrt(s) = 7 TeV, from a data sample collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 36 inverse picobarns. The cross section measurement, normalized to the measured cross section in the Z region, is reported for both the dimuon and dielectron channels in the dilepton invariant mass range 15-600 GeV. The normalized cross section values are quoted both in the full phase space and within the detector acceptance. The effect of final state radiation is also identified. The results are found to agree with theoretical predictions.
The DY spectrum normalized to the Z0 region and to the mass bin widths.
The DY spectrum normalized to the Z0 region for the dimuon channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
The DY spectrum normalized to the Z0 region for the dielectron channel. Results are for within the detector acceptance(DET) and full phase space both before (POST-FSR) and after final state raduiation corrections.
A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.
The measured charged hadron multiplicity density as a function of the centrality.
The measured charged hadron multiplicity density divided by Npart/2 as a function of the pseudorapidity in 4 centrality bins.
The measured charged hadron multiplicity density at pseudorapidiy=0 divided by Npart/2 as a function of the number of participants.
A measurement of inclusive W and Z production cross sections in pp collisions at sqrt(s)=7 TeV is presented. The electron and muon decay channels are analyzed in a data sample collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 inverse picobarns. The measured inclusive cross sections are sigma(pp-> WX) B(W-> l nu) = 10.30 +/- 0.02 (stat.) +/- 0.10 (syst.) +/- 0.10 (th.) +/- 0.41 (lumi.) nb and sigma(pp -> ZX) B(Z-> l^+l^-) = 0.974 +/- 0.007 (stat.) +/- 0.007 (syst.) +/- 0.018 (th.) +/- 0.039 (lumi.) nb, limited to the dilepton invariant mass range 60 to 120 GeV. The luminosity-independent cross section ratios are [sigma(pp->WX) B(W-> l nu)]/[sigma(pp-> ZX) B(Z->l^+l^-)] = 10.54 +/- 0.07 (stat.) +/- 0.08 (syst.) +/- 0.16 (th.) and [sigma(pp->W^+X) B(W^+ -> l^+nu)] / [sigma(pp->W^- X) B(W^- -> l^- nu)] = 1.421 +/- 0.006 (stat.) +/- 0.014 (syst.) +/- 0.029 (th.). The measured values agree with next-to-next-to-leading order QCD cross section calculations based on recent parton distribution functions.
Measured cross sections for combined positive and negative W production.
Measured cross sections for positive W production.
Measured cross sections for negative W production.
A measurement of the underlying activity in scattering processes with a hard scale in the several GeV region is performed in proton-proton collisions at sqrt(s) = 0.9 and 7 TeV, using data collected by the CMS experiment at the LHC. The production of charged particles with pseudorapidity |eta| < 2 and transverse momentum pT > 0.5 GeV/c is studied in the azimuthal region transverse to that of the leading set of charged particles forming a track-jet. A significant growth of the average multiplicity and scalar-pT sum of the particles in the transverse region is observed with increasing pT of the leading track-jet, followed by a much slower rise above a few GeV/c. For track-jet pT larger than a few GeV/c, the activity in the transverse region is approximately doubled with a centre-of-mass energy increase from 0.9 to 7 TeV. Predictions of several QCD-inspired models as implemented in PYTHIA are compared to the data.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 0.9 TeV.
Fully corrected average charged particle multiplicity per unit of pseudorapidity and per radian as a function of the leading track-jet transverse momentum for proton-proton collisions at a centre-of-mass energy of 7 TeV.
Ratio of the fully corrected charged particle multiplicity at 7 TeV to that at 0.9 TeV.